855 research outputs found

    Theory of magnetism and metal-insulator transition in layered perovskite iridates

    Full text link
    We investigate the metal-insulator transition in the layered Ruddelsden Popper series of strontium iridates Srn+1IrnO3n+1. Tight-binding models of t2g orbitals for n = 1, 2, and infinity are constructed, and changes in band dispersion due to dimensionality and spin-orbit coupling are presented. Identifying the states near the Fermi level to be predominantly Jeff = 1/2, we use an effective Hubbard model to study the effect of correlations. Transitions from a metallic state to various magnetically ordered states at different critical interactions are obtained. A canted antiferromagnetic insulator is found for Sr2IrO4, a c-axis collinear antiferromagnetic insulator for Sr3Ir2O7, and non-coplanar canted antiferromagnetic insulator via magnetic metal for SrIrO3. We derive the strong-coupling spin-model and compare the magnetic ordering patterns obtained in the weak and strong coupling limits. We find that they are identical, indicating that magnetic ordering is not sufficient to justify Mott physics in this series of iridates.Comment: 11 pages, 18 figure

    Canonical representation for electrons and its application to the Hubbard model

    Full text link
    A new representation for electrons is introduced, in which the electron operators are written in terms of a spinless fermion and the Pauli operators. This representation is canonical, invertible and constraint-free. Importantly, it simplifies the Hubbard interaction. On a bipartite lattice, the Hubbard model is reduced to a form in which the exchange interaction emerges simply by decoupling the Pauli subsystem from the spinless fermion bath. This exchange correctly reproduces the large UU superexchange. Also derived, for U=±∞U=\pm\infty, is the Hamiltonian to study Nagaoka ferromagnetism. In this representation, the infinite-UU Hubbard problem becomes elegant and easier to handle. Interestingly, the ferromagnetism in Hubbard model is found to be related to the gauge invariance of the spinless fermions. Generalization of this representation for the multicomponent fermions, a new representation for bosons, the notion of a `soft-core' fermion, and some interesting unitary transformations are introduced and discussed in the appendices.Comment: 10+ pages, 3 Figure

    Pairing Fluctuations Determine Low Energy Electronic Spectra in Cuprate Superconductors

    Full text link
    We describe here a minimal theory of tight binding electrons moving on the square planar Cu lattice of the hole-doped cuprates and mixed quantum mechanically with pairs of them (Cooper pairs). Superconductivity occurring at the transition temperature T_c is the long-range, d-wave symmetry phase coherence of these Cooper pairs. Fluctuations necessarily associated with incipient long-range superconducting order have a generic large distance behaviour near T_c. We calculate the spectral density of electrons coupled to such Cooper pair fluctuations and show that features observed in Angle Resolved Photo Emission Spectroscopy (ARPES) experiments on different cuprates above T_c as a function of doping and temperature emerge naturally in this description. These include `Fermi arcs' with temperature-dependent length and an antinodal pseudogap which fills up linearly as the temperature increases towards the pseudogap temperature. Our results agree quantitatively with experiment. Below T_c, the effects of nonzero superfluid density and thermal fluctuations are calculated and compared successfully with some recent ARPES experiments, especially the observed `bending' or deviation of the superconducting gap from the canonical d-wave form.Comment: 14 pages, 8 figures (to appear in Phys. Rev. B

    Electrically tunable g-factors in quantum dot molecular spin states

    Full text link
    We present a magneto-photoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g-factors of different spin states that have molecular wavefunctions distributed over both quantum dots. We propose a phenomenological model for the change in g-factor based on resonant changes in the amplitude of the wavefunction in the barrier due to the formation of bonding and antibonding orbitals.Comment: 5 pages, 5 figures, Accepted by Phys. Rev. Lett. New version reflects response to referee comment

    Planar spin exchange in LiNiO_2

    Full text link
    We study the planar spin exchange couplings in LiNiO2 using a perturbative approach. We show that the inclusion of the trigonal crystal field splitting at the Oxygen sites leads to the appearance of antiferromagnetic exchange integrals in deviation from the Goodenough-Kanamori-Anderson rules for this 90 degree bond. That gives a microscopic foundation for the recently observed coexistence of ferromagnetic and antiferromagnetic couplings in the orbitally-frustrated state of LiNiO2. (F. Reynaud et al, Phys. Rev. Lett. 86, 3638 (2001))Comment: latex, revtex4, 6 pages, 3 figure

    Spin Fine Structure in Optically Excited Quantum Dot Molecules

    Full text link
    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin exchange interactions, Pauli exclusion and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals, but spins.Comment: 10 pages, 7 figures, added material, (published

    Reentrant behavior of the phase stiffness in Josephson junction arrays

    Full text link
    The phase diagram of a 2D Josephson junction array with large substrate resistance, described by a quantum XY model, is studied by means of Fourier path-integral Monte Carlo. A genuine Berezinskii-Kosterlitz-Thouless transition is found up to a threshold value g* of the quantum coupling, beyond which no phase coherence is established. Slightly below g* the phase stiffness shows a reentrant behavior with temperature, in connection with a low-temperature disappearance of the superconducting phase, driven by strong nonlinear quantum fluctuations.Comment: 4 pages, 7 figures, to appear in Phys.Rev.Let

    Critical packing in granular shear bands

    Full text link
    In a realistic three-dimensional setup, we simulate the slow deformation of idealized granular media composed of spheres undergoing an axisymmetric triaxial shear test. We follow the self-organization of the spontaneous strain localization process leading to a shear band and demonstrate the existence of a critical packing density inside this failure zone. The asymptotic criticality arising from the dynamic equilibrium of dilation and compaction is found to be restricted to the shear band, while the density outside of it keeps the memory of the initial packing. The critical density of the shear band depends on friction (and grain geometry) and in the limit of infinite friction it defines a specific packing state, namely the \emph{dynamic random loose packing}

    Bulk electronic structure of superconducting LaRu2P2 single crystals measured by soft x-ray angle-resolved photoemission spectroscopy

    Full text link
    We present a soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES) study of the stoichiometric pnictide superconductor LaRu2P2. The observed electronic structure is in good agreement with density functional theory (DFT) calculations. However, it is significantly different from its counterpart in high-temperature superconducting Fe-pnictides. In particular the bandwidth renormalization present in the Fe-pnictides (~2 - 3) is negligible in LaRu2P2 even though the mass enhancement is similar in both systems. Our results suggest that the superconductivity in LaRu2P2 has a different origin with respect to the iron pnictides. Finally we demonstrate that the increased probing depth of SX-ARPES, compared to the widely used ultraviolet ARPES, is essential in determining the bulk electronic structure in the experiment.Comment: 4 pages, 4 figures, 1 supplemental material. Accepted for publication in Physical Review Letter
    • …
    corecore