1,891 research outputs found

    From the triangular to the kagome lattice: Following the footprints of the ordered state

    Get PDF
    We study the spin-1/2 Heisenberg model in a lattice that interpolates between the triangular and the kagome lattices. The exchange interaction along the bonds of the kagome lattice is J, and the one along the bonds connecting kagome and non-kagome sites is J', so that J'=J corresponds to the triangular limit and J'=0 to the kagome one. We use variational and exact diagonalization techniques. We analyze the behavior of the order parameter for the antiferromagnetic phase of the triangular lattice, the spin gap, and the structure of the spin excitations as functions of J'/J. Our results indicate that the antiferromagnetic order is not affected by the reduction of J' down to J'/J ~ 0.2. Below this value, antiferromagnetic correlations grow weaker, a description of the ground state in terms of a Neel phase renormalized by quantum fluctuations becomes inadequate, and the finite-size spectra develop features that are not compatible with antiferromagnetic ordering. However, this phase does not appear to be connected to the kagome phase as well, as the low-energy spectra do not evolve with continuity for J'-> 0 to the kagome limit. In particular, for any non-zero value of J', the latter interaction sets the energy scale for the low-lying spin excitations, and a gapless triplet spectrum, destabilizing the kagome phase, is expected.Comment: 9 pages, 10 Figures. To be published in PR

    Canonical representation for electrons and its application to the Hubbard model

    Full text link
    A new representation for electrons is introduced, in which the electron operators are written in terms of a spinless fermion and the Pauli operators. This representation is canonical, invertible and constraint-free. Importantly, it simplifies the Hubbard interaction. On a bipartite lattice, the Hubbard model is reduced to a form in which the exchange interaction emerges simply by decoupling the Pauli subsystem from the spinless fermion bath. This exchange correctly reproduces the large UU superexchange. Also derived, for U=±U=\pm\infty, is the Hamiltonian to study Nagaoka ferromagnetism. In this representation, the infinite-UU Hubbard problem becomes elegant and easier to handle. Interestingly, the ferromagnetism in Hubbard model is found to be related to the gauge invariance of the spinless fermions. Generalization of this representation for the multicomponent fermions, a new representation for bosons, the notion of a `soft-core' fermion, and some interesting unitary transformations are introduced and discussed in the appendices.Comment: 10+ pages, 3 Figure

    Magnetism, coherent many-particle dynamics, and relaxation with ultracold bosons in optical superlattices

    Full text link
    We study how well magnetic models can be implemented with ultracold bosonic atoms of two different hyperfine states in an optical superlattice. The system is captured by a two-species Bose-Hubbard model, but realizes in a certain parameter regime actually the physics of a spin-1/2 Heisenberg magnet, describing the second order hopping processes. Tuning of the superlattice allows for controlling the effect of fast first order processes versus the slower second order ones. Using the density-matrix renormalization-group method, we provide the evolution of typical experimentally available observables. The validity of the description via the Heisenberg model, depending on the parameters of the Hubbard model, is studied numerically and analytically. The analysis is also motivated by recent experiments [S. Foelling et al., Nature 448, 1029 (2007); S. Trotzky et al., Sience 319, 295 (2008)] where coherent two-particle dynamics with ultracold bosonic atoms in isolated double wells were realized. We provide theoretical background for the next step, the observation of coherent many-particle dynamics after coupling the double wells. Contrary to the case of isolated double wells, relaxation of local observables can be observed. The tunability between the Bose-Hubbard model and the Heisenberg model in this setup could be used to study experimentally the differences in equilibration processes for nonintegrable and Bethe ansatz integrable models. We show that the relaxation in the Heisenberg model is connected to a phase averaging effect, which is in contrast to the typical scattering driven thermalization in nonintegrable models. We discuss the preparation of magnetic groundstates by adiabatic tuning of the superlattice parameters.Comment: 20 pages, 24 figures; minor changes, published versio

    Quasiparticle spectral weights of Gutzwiller-projected high T_c superconductors

    Full text link
    We analyze the electronic Green's functions in the superconducting ground state of the t-J model using Gutzwiller-projected wave functions, and compare them to the conventional BCS form. Some of the properties of the BCS state are preserved by the projection: the total spectral weight is continuous around the quasiparticle node and approximately constant along the Fermi surface. On the other hand, the overall spectral weight is reduced by the projection with a momentum-dependent renormalization, and the projection produces electron-hole asymmetry in renormalization of the electron and hole spectral weights. The latter asymmetry leads to the bending of the effective Fermi surface which we define as the locus of equal electron and hole spectral weight.Comment: 6 pages, 5 figures; x-labels on Figs. 1 and 2 corrected, footnote on particle number corrected, references adde

    Filling dependence of a new type of charge ordered liquid on a triangular lattice system

    Full text link
    We study the recently reported characteristic gapless charge ordered state in a spinless fermion system on a triangular lattice under strong inter-site Coulomb interactions. In this state the charges are spontaneously divided into solid and liquid component, and the former solid part aligns in a Wigner crystal manner while the latter moves among them like a pinball. We show that such charge ordered liquid is stable over a wide range of filling, 1/3<n<2/31/3<n<2/3, and examine its filling dependent nature.Comment: 3 pages 3 figure

    Computer-aided Melody Note Transcription Using the Tony Software: Accuracy and Efficiency

    Get PDF
    accepteddate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfdate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfWe present Tony, a software tool for the interactive an- notation of melodies from monophonic audio recordings, and evaluate its usability and the accuracy of its note extraction method. The scientific study of acoustic performances of melodies, whether sung or played, requires the accurate transcription of notes and pitches. To achieve the desired transcription accuracy for a particular application, researchers manually correct results obtained by automatic methods. Tony is an interactive tool directly aimed at making this correction task efficient. It provides (a) state-of-the art algorithms for pitch and note estimation, (b) visual and auditory feedback for easy error-spotting, (c) an intelligent graphical user interface through which the user can rapidly correct estimation errors, (d) extensive export functions enabling further processing in other applications. We show that Tony’s built in automatic note transcription method compares favourably with existing tools. We report how long it takes to annotate recordings on a set of 96 solo vocal recordings and study the effect of piece, the number of edits made and the annotator’s increasing mastery of the software. Tony is Open Source software, with source code and compiled binaries for Windows, Mac OS X and Linux available from https://code.soundsoftware.ac.uk/projects/tony/

    Multi-Channel Kondo Necklace

    Full text link
    A multi--channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean--field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The NN conduction electron channels are represented by NN sets of pseudospins \vt_{j}, j=1,...,Nj=1, ... , N, which are all antiferromagnetically coupled to a periodic array of |\vs|=1/2 spins. Exploiting permutation symmetry in the channel index jj allows us to write down the self--consistency equation for general NN. For N>2N>2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi--channel problem is discussed.Comment: 29 pages (2 figures upon request from [email protected]), LATEX, submitted for publicatio

    Spin order in the one-dimensional Kondo and Hund lattices

    Get PDF
    We study numerically the one-dimensional Kondo and Hund lattices consisting of localized spins interacting antiferro or ferromagnetically with the itinerant electrons, respectively. Using the Density Matrix Renormalization Group we find, for both models and in the small coupling regime, the existence of new magnetic phases where the local spins order forming ferromagnetic islands coupled antiferromagnetically. Furthermore, by increasing the interaction parameter J|J| we find that this order evolves toward the ferromagnetic regime through a spiral-like phase with longer characteristic wave lengths. These results shed new light on the zero temperature magnetic phase diagram for these models.Comment: PRL, to appea

    Anomalous Hall Effect in three ferromagnets: EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30

    Full text link
    The Hall resistivity (Rho_xy), resistivity (Rho_xx), and magnetization of three metallic ferromagnets are investigated as a function of magnetic field and temperature. The three ferromagnets, EuFe4Sb12 (Tc = 84 K), Yb14MnSb11 (Tc = 53 K), and Eu8Ga16Ge30 (Tc = 36 K) are Zintl compounds with carrier concentrations between 1 x 10^21 cm^-3 and 3.5 x 10^21 cm^-3. The relative decrease in Rho_xx below Tc [Rho_xx(Tc)/Rho_xx(2 K)] is 28, 6.5, and 1.3 for EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30 respectively. The low carrier concentrations coupled with low magnetic anisotropies allow a relatively clean separation between the anomalous (Rho_'xy), and normal contributions to the measured Hall resistivity. For each compound the anomalous contribution in the zero field limit is fit to alpha Rho_xx + sigma_xy rho_xx^2 for temperatures T < Tc. The anomalous Hall conductivity, sigma_xy, is -220 +- 5 (Ohm^-1 cm^-1), -14.7 +- 1 (Ohm^-1 cm^-1), and 28 +- 3 (Ohm^-1 cm^-1) for EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30 respectively and is independent of temperature for T < Tc if the change in spontaneous magnetization (order parameter) with temperature is taken into account. These data are consistent with recent theories of the anomalous Hall effect that suggest that even for stochiometric ferromagnetic crystals, such as those studied in this article, the intrinsic Hall conductivity is finite at T = 0, and is a ground state property that can be calculated from the electronic structure.Comment: 22 pages, 13 figures Submitted to PR

    Interaction Effect in the Kondo Energy of the Periodic Anderson-Hubbard Model

    Full text link
    We extend the periodic Anderson model by switching on a Hubbard UdU_d for the conduction electrons. The nearly integral valent (Kondo) limit of the Anderson--Hubbard model is studied with the Gutzwiller variational method. The new formula for the Kondo energy contains the UdU_d-dependent chemical potential of the Hubbard subsystem in the exponent, and the correlation-induced band narrowing in the prefactor. Both effects tend to suppress the Kondo scale, which can be understood to result from the blocking of hybridization (this behaviour is the opposite of that found for Kondo--Hubbard models). At half-filling, we find a Brinkman--Rice-type transition which leads from a small-gap Kondo insulator to a Mott insulator.Comment: 4 pages (ReVTeX), submitted for publicatio
    corecore