67 research outputs found

    Cluster electron observations of the separatrix layer during traveling compression regions

    Get PDF
    [ 1] We present Cluster 4-point observations of electrons during traveling compression regions ( TCRs) on 19 September 2001. The electron and \B\ signatures vary with distance from the plasma sheet, confirming that transient plasma sheet bulges propagate past Cluster. TCRs with \B\ increases have either no electron signature, or unidirectional similar to1 keV electrons at the plasma sheet edge. However, spacecraft initially near the plasma sheet edge are engulfed within the bulge and observe a diamagnetic reduction in \B\. In cases where the underlying plasma sheet bulge moves earthward, electrons at the plasma sheet edge stream tailward. We suggest this represents either a remote observation of electrons closing the Hall current system in an ion diffusion region located farther tailward, or the outflow jets along the separatrix formed by a second neutral line located farther earthward of the spacecraft. The latter case implies the simultaneous action of multiple X-lines in the near-Earth tail

    Thin electron-scale layers at the magnetopause

    Get PDF
    We use data from the four Cluster satellites to examine the microphysics of a thin electron-scale layer discovered on the magnetospheric side of the magnetopause. Here the ion and electron motions are decoupled in a layer about 20 km (a few electron scales) wide, including currents and strong electric fields. In this layer the electrons are E x B drifting with the ions as a background, and the region can be described by Hall MHD physics. A unique identification of the source of the thin layer is not possible, but our observations are consistent with recent simulations showing thin layers associated with the separatrix extending far away from a reconnection diffusion region

    Electron Dynamics in the Diffusion Region of an Asymmetric Magnetic Reconnection

    Get PDF
    During a magnetopause crossing near the subsolar point Cluster observes the ion diffusion region of antiparallel magnetic reconnection. The reconnecting plasmas are asymmetric, differing in magnetic field strength, density, and temperature. Spatial changes in the electron distributions in the diffusion region are resolved and investigated in detail. Heating of magnetosheath electrons parallel to the magnetic field is observed. This heating is shown to be consistent with trapping of magnetosheath electrons by parallel electric fields

    Cluster PEACE observations of electron pressure tensor divergence in the magnetotail

    Get PDF
    Cluster crossed the magnetotail neutral sheet on four occasions between 16: 38 and 16: 43 UT on 08/17/2003. The four-spacecraft capabilities of Cluster are used to determine spatial gradients from the magnetic field vectors and, for the first time, full electron pressure tensors. We find that the contribution to the electric field from the Hall term (max of similar to 6 mV/m) pointed towards the neutral sheet, whereas that from the electron pressure divergence ( max of similar to 1 mV/m) pointed away from the neutral sheet. The electric field contributions in this direction were closely anti-correlated. During this period Clusters 1 and 4 were sometimes above and below the neutral sheet respectively. This allowed the simultaneous observation of magnetic fields that are interpreted as two quadrants of the Hall magnetic field system. An associated field-aligned current system was detected using the curlometer and moments of the particle distributions

    An investigation of the sources of Earth-directed solar wind during Carrington Rotation 2053

    Get PDF
    In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode's Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process

    Relating near-Earth observations of an interplanetary coronal mass ejection to the conditions at its site of origin in the solar corona

    Get PDF
    A halo coronal mass ejection (CME) was detected on January 20, 2004. We use solar remote sensing data (SOHO, Culgoora) and near-Earth in situ data (Cluster) to identify the CME source event and show that it was a long duration flare in which a magnetic flux rope was ejected, carrying overlying coronal arcade material along with it. We demonstrate that signatures of both the arcade material and the flux rope material are clearly identifiable in the Cluster and ACE data, indicating that the magnetic field orientations changed little as the material traveled to the Earth, and that the methods we used to infer coronal magnetic field configurations are effective

    A survey of flux transfer events observed by Cluster during strongly northward IMF

    Get PDF
    During Cluster's annual dayside seasons (November June) the four spacecraft cross the magnetopause at high latitudes near local noon, and at lower latitudes further along the flanks. During these crossings, observations of flux transfer events (FTEs), a signature of transient or variable-rate magnetopause merging, are often made. We have compiled a survey of FTEs observed by Cluster in the 2002/3 dayside season. A significant number of FTEs, presented here, were observed under strongly northward IMF. Multi-spacecraft techniques enable more accurate velocities to be calculated than previously possible. The observed velocities are consistent with a long, component merging X-line emanating from the antiparallel merging site in the lobe, but require a relaxation of the antiparallel merging hypothesis to allow the X-line to extend to regions of lower shear on the flank. The velocities observed at lower latitudes are not consistent with a subsolar X-line

    Average magnetotail electron and proton pitch angle distributions from Cluster PEACE and CIS observations

    Get PDF
    We present results from the first systematic survey of proton and electron pitch angle distributions in the magnetotail, based on Cluster CIS and PEACE data binned by proton plasma beta (beta(p)). The proton distributions conform to the canonical picture of magnetotail ions - a boundary layer made up of Earthward streaming and bidirectional field-aligned particles, consistent with recent observations of time-varying beamlets, which gives way to a broadly isotropic central plasma sheet when beta(p) similar to 3. The electron distributions are significantly different from the canonical picture. A "boundary layer" made up of bidirectional field-aligned electrons is observed to values of beta(p) as high as 17. This boundary quickly gives way to perpendicular-dominated electrons close to the neutral sheet. Hence, our results suggest that, on average, there is no extended, isotropic electron plasma sheet and that the proton plasma sheet is not routinely encountered until higher beta(p) than commonly assumed. Citation: Walsh, A. P., C. J. Owen, A. N. Fazakerley, C. Forsyth, and I. Dandouras (2011), Average magnetotail electron and proton pitch angle distributions from Cluster PEACE and CIS observations, Geophys. Res. Lett., 38, L06103, doi:10.1029/2011GL046770

    On the effect of line current width and relative position on the multi-spacecraft curlometer technique

    Get PDF
    The response of the multi-spacecraft curlometer technique to variations in the size and relative position of infinitely long line currents with radially varying current density is systematically investigated for spacecraft in a regular tetrahedral formation. It is shown that, for line currents with a width less than the spacecraft separation, there is significant variation in the returned current with position of that current within the tetrahedron. For infinitely thin line currents, the curlometer tends to detect approximately 20% of the input current. For increasingly wide line currents there is less variation of the curlometer results with position of the current and the percentage of current magnitude detected increases. When the width of the current system is half the spacecraft separation, the curlometer tends to detect approximately 80% of the input current. These results are discussed in the context of multi-scale, multi-spacecraft missions. (C) 2010 Elsevier Ltd. All rights reserved

    The Association of Cusp-Aligned Arcs With Plasma in the Magnetotail Implies a Closed Magnetosphere

    Get PDF
    We investigate a 15-day period in October 2011. Auroral observations by the Special Sensor Ultraviolet Spectrographic Imager instrument onboard the Defense Meteorological Satellite Program F16, F17, and F18 spacecraft indicate that the polar regions were covered by weak cusp-aligned arc (CAA) emissions whenever the interplanetary magnetic field (IMF) clock angle was small, |θ| < 45°, which amounted to 30% of the time. Simultaneous observations of ions and electrons in the tail by the Cluster C4 and Geotail spacecraft showed that during these intervals dense (≈1 cm−3) plasma was observed, even as far from the equatorial plane of the tail as |ZGSE| ≈ 13 RE. The ions had a pitch angle distribution peaking parallel and antiparallel to the magnetic field and the electrons had pitch angles that peaked perpendicular to the field. We interpret the counter-streaming ions and double loss-cone electrons as evidence that the plasma was trapped on closed field lines, and acted as a source for the CAA emission across the polar regions. This suggests that the magnetosphere was almost entirely closed during these periods. We further argue that the closure occurred as a consequence of dual-lobe reconnection. Our finding forces a significant re-evaluation of the magnetic topology of the magnetosphere during periods of northwards IMF
    • …
    corecore