3 research outputs found

    Microbiological Assessment of the Different Hand Drying Methods and Washroom Environment Cross-Contamination

    No full text
    Proper hand drying is a fundamental part of the hand hygiene process looking at optimizing the elimination of potentially pathogenic microbes. This research compared the effectiveness of three different hand drying methods—paper towels, the use of warm air dryers in stationary hands position, and the use of air drying while hand rubbing—and their potential for cross-contamination of other users and the surrounding environment. One hundred sixty samples were collected from finger pads and palms, before and after drying. The outlet of the air dryers, air current emitted from the air dryers, and washroom environment air were also tested. The study reported that paper towels were more successful in eliminating bacteria and lead to less contamination to the washroom environment compared to the air dryers. The average number of bacteria obtained from volunteers using hand air dryer while hand rubbing was significantly higher than drying with air dryer while holding hands stationary. Plates exposed to the turned-off dryer for 5 minutes gave an average of only 25 colonies/plate, while plates exposed to the air outlet of the turned-on warm air dryers provided 292 colonies/plate. Placing Petri dishes at least one meter away from the dryer in the washroom for 30 minutes gave 72.5 colonies/plate. The current research also documented frequent contamination of public washroom environments and showed dissemination of potential pathogens, including Escherichia coli (E. coli), Klebsiella species, Bacillus cereus (B. cereus), Staphylococcus aureus (S. aureus), and coagulase-negative Staphylococci. Over 70.0% of Staphylococci were resistant to at least three antibiotics and 50.0% revealed coresistance to at least four antibiotics including penicillin, erythromycin, clindamycin, and co-trimoxazole. The method of hand drying may serve as a risk factor of cross-contamination from users to the environment and subsequent users and as reservoirs of drug-resistant bacteria in public washrooms

    Pathogenicity of three entomopathogenic fungi, to the aphid species, Metopolophium dirhodum (Walker) (Hemiptera: Aphididae), and their Alkaline protease activities

    No full text
    Abstract The aim of the present study is to investigate the effect of three entomopathogenic fungi (EPF) (Beauveria bassiana, Cladosporium cladosporioides, and Verticillium alfalfae) on the aphid species, Metopolophium dirhodum (Walker) (Hemiptera: Aphididae). The selected EPF were isolated from the agricultural soil of the National Institute of Plant Protection (INPV) in Constantine, Algeria, and were tested against the aphid insects that were collected from the same area. The aphid species M. dirhodum were exposed to each fungal spore suspensions 107 conidia/ml for 10 s. Percent mortality was recorded at 1, 3, 5, and 7 days post treatment. Percentage mortalities, 7 days post treatment, were 95.83, 63.98, and 51.83% by B. bassiana, C. cladosporioides, and V. alfalfae, respectively. The higher protease activities were observed for isolate V. alfalfae with 95 U/ml, followed by B. bassiana with 38.26 U/ml, and finally C. cladosporioides with 35, 65 U/ml. The results presented in this study revealed that there was no relation between high alkaline protease activities and high virulence isolates

    Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review

    No full text
    This article provides useful information for understanding the specific role of microbes in the pollutant removal process in floating treatment wetlands (FTWs). The current literature is collected and organized to provide an insight into the specific role of microbes toward plants and pollutants. Several aspects are discussed, such as important components of FTWs, common bacterial species, rhizospheric and endophytes bacteria, and their specific role in the pollutant removal process. The roots of plants release oxygen and exudates, which act as a substrate for microbial growth. The bacteria attach themselves to the roots and form biofilms to get nutrients from the plants. Along the plants, the microbial community also influences the performance of FTWs. The bacterial community contributes to the removal of nitrogen, phosphorus, toxic metals, hydrocarbon, and organic compounds. Plant–microbe interaction breaks down complex compounds into simple nutrients, mobilizes metal ions, and increases the uptake of pollutants by plants. The inoculation of the roots of plants with acclimatized microbes may improve the phytoremediation potential of FTWs. The bacteria also encourage plant growth and the bioavailability of toxic pollutants and can alleviate metal toxicity
    corecore