7 research outputs found

    Cellular and viral determinants of retroviral nuclear entry

    No full text
    Retroviruses must integrate their cDNA into the host genome to generate proviruses. Viral DNA-protein complexes interact with cellular proteins and produce pre-integration complexes (PICs), which carry the viral genome and cross the nuclear pore channel to enter the nucleus and integrate viral DNA into host chromosomal DNA. If the reverse transcripts fail to integrate, linear or circular DNA species such as 1- and 2-long-terminal-repeats (1-LTRs and 2-LTRs, respectively) are generated. Such complexes encounter numerous cellular proteins in the cytoplasm, which restrict viral infection and protect the nucleus. To overcome host cell defenses, the pathogens have evolved several evasion strategies. Viral proteins often contain nuclear localization signals (NLSs), allowing entry into the nucleus. Among more than 1000 proteins identified as required for HIV infection by RNA interference screening, karyopherins, cleavage and polyadenylation specific factor 6, and nucleoporins have been predominantly studied. This review discusses current opinions about the synergistic relationship between the viral and cellular factors involved in nuclear import, with focus on the unveiled mysteries of the host-pathogen interaction, and highlights novel approaches to pinpoint therapeutic targets.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Genetic Heterogeneity of Single Circulating Tumour Cells in Colorectal Carcinoma

    No full text
    The aim of the present study was to isolate and investigate the genetic heterogeneities in single circulating tumour cells (CTCs) from patients with colorectal carcinoma (CRC). Twenty-eight single CTCs were collected from eight patients with CRC using a negative immunomagnetic enrichment method. After validation with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene expression in 3 colon cancer cell lines, a panel of 19 genes were used to analyse the single CTCs (n = 28), primary colorectal carcinoma tissues (n = 8) and colon carcinoma cells (n = 6) using real-time qPCR. Genetic heterogeneities were assessed by comparing gene expression profiles of single CTCs from the different patients and in the same patient, respectively. Genetic profiling of the single CTCs showed extensive heterogeneities of the selected genes among the CTCs. Hierarchical clustering analyses exhibited two clusters of CTCs with differentially expressed genes, which highlighted different modifications from the primary carcinomas. Further, the genetic heterogeneities were observed between different patients or in the same patient. Finally, AKT1 expression was significantly (p = 0.0129) higher in single CTCs from CRC of advanced pathological stages (III or IV) CRC than in CTCs from CRC of early stages (I or II). Our findings suggest that single-cell genetic analysis can monitor the genetic heterogeneities and guide the personalised therapeutic targets in clinical sectors

    Gene Expression Analysis of Immune Regulatory Genes in Circulating Tumour Cells and Peripheral Blood Mononuclear Cells in Patients with Colorectal Carcinoma

    Get PDF
    Information regarding genetic alterations of driver cancer genes in circulating tumour cells (CTCs) and their surrounding immune microenvironment nowadays can be employed as a real-time monitoring platform for translational applications such as patient response to therapeutic targets, including immunotherapy. This study aimed to investigate the expression profiling of these genes along with immunotherapeutic target molecules in CTCs and peripheral blood mononuclear cells (PBMCs) in patients with colorectal carcinoma (CRC). Expression of p53, APC, KRAS, c-Myc, and immunotherapeutic target molecules PD-L1, CTLA-4, and CD47 in CTCs and PBMCs were analysed by qPCR. Their expression in high versus low CTC-positive patients with CRC was compared and clinicopathological correlations between these patient groups were analysed. CTCs were detected in 61% (38 of 62) of patients with CRC. The presence of higher numbers of CTCs was significantly correlated with advanced cancer stages (p = 0.045) and the subtypes of adenocarcinoma (conventional vs. mucinous, p = 0.019), while being weakly correlated with tumour size (p = 0.051). Patients with lower numbers of CTCs had higher expression of KRAS. Higher KRAS expression in CTCs was negatively correlated with tumour perforation (p = 0.029), lymph node status (p = 0.037), distant metastasis (p = 0.046) and overall staging (p = 0.004). CTLA-4 was highly expressed in both CTCs and PBMCs. In addition, CTLA-4 expression was positively correlated with KRAS (r = 0.6878, p = 0.002) in the enriched CTC fraction. Dysregulation of KRAS in CTCs might evade the immune system by altering the expression of CTLA-4, providing new insights into the selection of therapeutic targets at the onset of the disease. Monitoring CTCs counts, as well as gene expression profiling of PBMCs, can be helpful in predicting tumour progression, patient outcome and treatment

    Correlation between <i>KRAS</i> Mutation and <i>CTLA-4</i> mRNA Expression in Circulating Tumour Cells: Clinical Implications in Colorectal Cancer

    Get PDF
    Combination strategies of KRAS inhibition with immunotherapy in treating advanced or recurrent colorectal carcinoma (CRC) may need to be assessed in circulating tumour cells (CTCs) to achieve better clinical outcomes. This study aimed to investigate the genomic variations of KRAS in CTCs and matched CRC tissues and compared mRNA expression of KRAS and CTLA-4 between wild-type and KRAS-mutated CTCs and CRC tissues. Clinicopathological correlations were also compared. Six known mutations of KRAS were identified at both codon 12 and codon 13 (c.35G>T/G12V, c.35G>A7/G12D, c.35G>C/G12A, c.34G>A/G12S, c.38G>C/G13A, and c.38G>A/G13D). Three CTC samples harboured the identified mutations (16.7%; 3/18), while fifteen matched primary tumour tissues (65.2%, 15/23) showed the mutations. CTCs harbouring the KRAS variant were different from matched CRC tissue. All the mutations were heterozygous. Though insignificant, CTLA-4 mRNA expression was higher in patients carrying KRAS mutations. Patients harbouring KRAS mutations in CTCs were more likely to have poorly differentiated tumours (p = 0.039) and with lymph node metastasis (p = 0.027) and perineural invasion (p = 0.014). KRAS mutations in CTCs were also significantly correlated with overall pathological stages (p = 0.027). These findings imply the genetic basis of KRAS with immunotherapeutic target molecules based on a real-time platform. This study also suggests the highly heterogeneous nature of cancer cells, which may facilitate the assessment of clonal dynamics across a single patient’s disease
    corecore