2 research outputs found

    Device-to-Device Communication in 5G: Towards Efficient Scheduling

    Get PDF
    5G wireless networks are expected to carry large traffic volumes due to the growth of mobile devices and the increasing demand for high data rates from applications. Device to device communication is one of the suggested technologies to support this increasing load and enhance the capacity of networks. However, the implementation of D2D communication reveals many barriers that include communication scheduling, for which the architecture remains complex and obscure. In this paper, an overview of the available literature on the implementation of networks supporting D2D communication is presented, emphasizing the complexity of the offered solutions. This paper also offers a study of the impact of different device distribution models on the throughput of the devices. The paper introduces the challenges and makes the case for the need to find a more efficient D2D scheduler providing less complexity

    Quantitative study of thresholding for device-to-device communication in 5G networks

    No full text
    Device-to-device (D2D) communication was introduced as one of the technologies expected to tackle the increasing demand for high data rates and the growing usage of smartphones with its consequent traffic volumes. Interference is the main problem from which D2D suffers, for which several schedulers were developed. Most of the current scheduling techniques show a significant level of complexity. One way to reduce interference for D2D is to exclude some devices in a cell from D2D communication. In this paper we propose the use of a simple noise thresholding regardless of the scheduler. A device can take part in a D2D connection only if after their transmission, the value of interference in the cell remains below a specific threshold. This paper presents a comparison between the throughput of D2D devices for the case when devices are excluded based on the noise level in a cell compared to the case where no exclusion is made. In a previous work it was found that the probability distribution of device locations significantly impacted throughput. The results from two different probability distributions are presented in this paper. This study shows that when an exclusive approach is taken, the throughput per D2D device can be probabilistically guaranteed
    corecore