6 research outputs found

    Solubilities of pyrene in organic solvents: Comparison between chemical potential calculations using a cavity-based method and direct coexistence simulations

    Get PDF
    In this paper, we benchmark a cavity-based simulation method for calculating the relative solubility of large molecules in explicit solvents. The essence of the procedure is the accounting of the Gibbs energy change associated with an alchemical thermodynamic cycle where, in sequence, a cavity is created in a solvent, a solute is inserted in the cavity and the cavity is annihilated. The Gibbs energy change is equated to the excess chemical potential allowing the comparison of solubilities in different solvents. The results obtained using the cavity-based method are compared to direct large-scale molecular dynamics simulations performed using coarse-grained models for calculating the partition coefficient of pyrene between heptane and toluene. We demonstrate the applicability of this cavity-based technique under high pressure/temperature conditions.The authors gratefully acknowledge the generous funding and technical support for this work from BP Plc through the International Centre for Advanced Materials (ICAM) which made this research possible

    Coarse-grained molecular dynamics study of the self- assembly of polyphilic bolaamphiphiles using the SAFT- γ mie force field

    No full text
    A methodology is outlined to parametrize coarse grained molecular models for the molecular dynamics simulation of liquid crystalline bolaamphiphiles (BAs). We employ a top down approach based on the use of the Statistical Associating Fluid Theory (SAFT) that provides a robust and transferable set of building blocks from the fitting of thermophysical properties of smaller molecules. The model is employed to characterise symmetric and asymmetric swallow-tailed BAs and to compare them with an isomeric T-shaped BA. Branching of the side chain of the BAs, leading to the swallow-tailed geometry generates a richness in the number and morphology of liquid crystal mesophases. The simulations elucidate some of the intriguing results observed in experiments

    Coarse-grained molecular simulation of polymers supported by the use of the SAFT-γ mie equation of state

    Get PDF
    A framework to self-consistently combine a classical equation of state (EoS) and a molecular force field to model polymers and polymer mixtures is presented. The statistical associating fluid theory (SAFT-γ Mie) model is used to correlate the thermophysical properties of oligomers and generate robust and transferrable coarse-grained (CG) molecular parameters which can be used both in particle based molecular simulations and in EoS calculations. Examples are provided for polyethylene, polypropylene, polyisobutylene atactic polystyrene, 1,4-cis-butadiene, polyisoprene, their blends and mixtures with low molecular weight solvents. Different types of liquid-liquid phase behaviour are quantitatively captured both by the EoS and by direct molecular dynamics simulations. The use of CG models following this top-down approach extends the time and length scales accessible to molecular simulation while retaining quantitative accuracy as compared to experimental results

    Significant effect of rugosity on transport of hydrocarbon liquids in carbonaceous nanopores

    No full text
    We report the results of modelling the transport of n-octane and n-hexadecane and their mixtures through carbonaceous nanopores at high-pressure conditions. Pores are modelled as smooth slit sheets with perturbations added as ridges and steps and a version of the Statistical Associating Fluid Theory (SAFT-γ Mie) is used both as equation of state and as a coarse-grained force field to account for fluid-fluid and fluid-solid molecular interactions. Molecular simulation allowed the description of transport diffusivities in terms of molecular flow, using boundary driven non-equilibrium molecular dynamics (BD-NEMD). Transport diffusivities are also independently calculated using equilibrium and external force non-equilibrium molecular dynamics (EF-NEMD) simulations, after accounting for the adsorption on the pores. We show consistency between the approaches for quantifying transport in terms of permeabilities (Darcy flows) and transport diffusivities. We find that smooth slit carbon pore models, which are commonly employed in literature as surrogates for kerogen regions in shale, are an inadequate representation of ultra-confined natural pores. For slit pores, the flow patterns are characterized by a fully-mutualized plug-like flow and fast transport. However, by incorporating even a small amount of rugosity (roughness) to the solid walls, the diffusion coefficients decrease dramatically with surface roughness significantly affecting the characteristic transport and velocity profiles inside the pores. In all cases, it is seen that there are important cross-correlation effects, influencing the way components of the mixture flow together. Calculated self-diffusivities are orders of magnitude smaller than the observed transport diffusivities for liquid mixtures. This work has a direct impact on the understanding and modelling of unconventional hydrocarbon recovery and flow in organic shale rocks

    SAFT-Υ force field for the simulation of molecular fluids 9: Coarse-grained models for polyaromatic hydrocarbons describing thermodynamic, interfacial, structural, and transport properties

    No full text
    Coarse-grained models of polyaromatic hydrocarbons parametrized by employing the SAFT- Mie approach are presented and assessed by comparison with experimental data and all-atom models in their ability to describe liquid densities, isothermal compressibilities, thermal expansivities, viscosities, and interfacial tensions. The structural behaviour characterized by the center of mass and angular radial distribution functions are also benchmarked. The SAFT- Mie force field models are shown to deliver quantitatively accurate predictions while promising significant speedups in the computational cost of performing molecular dynamics simulations

    Use of boundary driven non-equilibrium molecular dynamics for determining transport diffusivities of multicomponent mixtures in nanoporous materials

    No full text
    The boundary-driven molecular modeling strategy to evaluate mass transport coefficients of fluids in nanoconfined media is revisited and expanded to multicomponent mixtures. The method requires setting up a simulation with bulk fluid reservoirs upstream and downstream of a porous media. A fluid flow is induced by applying an external force at the periodic boundary between the upstream and downstream reservoirs. The relationship between the resulting flow and the density gradient of the adsorbed fluid at the entrance/exit of the porous media provides for a direct path for the calculation of the transport diffusivities. It is shown how the transport diffusivities found this way relate to the collective, Onsager, and self-diffusion coefficients, typically used in other contexts to describe fluid transport in porous media. Examples are provided by calculating the diffusion coefficients of a Lennard-Jones (LJ) fluid and mixtures of differently sized LJ particles in slit pores, a realistic model of methane in carbon-based slit pores, and binary mixtures of methane with hypothetical counterparts having different attractions to the solid. The method is seen to be robust and particularly suited for the study of study of transport of dense fluids and liquids in nanoconfined media
    corecore