9,204 research outputs found

    Dynamical study of the hyperextended scalar-tensor theory in the empty Bianchi type I model

    Full text link
    The dynamics of the hyperextended scalar-tensor theory in the empty Bianchi type I model is investigated. We describe a method giving the sign of the first and second derivatives of the metric functions whatever the coupling function. Hence, we can predict if a theory gives birth to expanding, contracting, bouncing or inflationary cosmology. The dynamics of a string inspired theory without antisymetric field strength is analysed. Some exact solutions are found.Comment: 18 pages, 3 figure

    Pressure Evolution of the Ferromagnetic and Field Re-entrant Superconductivity in URhGe

    Full text link
    Fine pressure (PP) and magnetic field (HH) tuning on the ferromagnetic superconductor URhGe are reported in order to clarify the interplay between the mass enhancement, low field superconductivity (SC) and field reentrant superconductivity (RSC) by electrical resistivity measurements. With increasing PP, the transition temperature and the upper critical field of the low field SC decrease slightly, while the RSC dome drastically shifts to higher fields and shrinks. The spin reorientation field HRH_{\rm R} also increases. At a pressure P1.8P\sim 1.8 GPa, the RSC has collapsed while the low field SC persists and may disappear only above 4 GPa. Via careful (P,H)(P, H) studies of the inelastic T2T^2 resistivity term, it is demonstrated that this drastic change is directly related with the PP dependence of the effective mass which determines the critical field of the low field SC and RSC on the basis of triplet SC without Pauli limiting field.Comment: 5 pages, 6 figures, to appear in Journal of the Physical Society of Japa

    Topology Change and Causal Continuity

    Get PDF
    The result that, for a scalar quantum field propagating on a ``trousers'' topology in 1+1 dimensions, the crotch singularity is a source for an infinite burst of energy has been used to argue against the occurrence of topology change in quantum gravity. We draw attention to a conjecture due to Sorkin that it may be the particular type of topology change involved in the trousers transition that is problematic and that other topology changes may not cause the same difficulties. The conjecture links the singular behaviour to the existence of ``causal discontinuities'' in the spacetime and relies on a classification of topology changes using Morse theory. We investigate various topology changing transitions, including the pair production of black holes and of topological geons, in the light of these ideas.Comment: Latex, 28 pages, 10 figures, small changes in text (one figure removed), conclusions remain unchanged. Accepted for publication in Physical Review

    Notes on Euclidean Wilson loops and Riemann Theta functions

    Full text link
    The AdS/CFT correspondence relates Wilson loops in N=4 SYM theory to minimal area surfaces in AdS5 space. In this paper we consider the case of Euclidean flat Wilson loops which are related to minimal area surfaces in Euclidean AdS3 space. Using known mathematical results for such minimal area surfaces we describe an infinite parameter family of analytic solutions for closed Wilson loops. The solutions are given in terms of Riemann theta functions and the validity of the equations of motion is proven based on the trisecant identity. The world-sheet has the topology of a disk and the renormalized area is written as a finite, one-dimensional contour integral over the world-sheet boundary. An example is discussed in detail with plots of the corresponding surfaces. Further, for each Wilson loops we explicitly construct a one parameter family of deformations that preserve the area. The parameter is the so called spectral parameter. Finally, for genus three we find a map between these Wilson loops and closed curves inside the Riemann surface.Comment: 35 pages, 7 figures, pdflatex. V2: References added. Typos corrected. Some points clarifie

    Simulating causal collapse models

    Full text link
    We present simulations of causal dynamical collapse models of field theories on a 1+1 null lattice. We use our simulations to compare and contrast two possible interpretations of the models, one in which the field values are real and the other in which the state vector is real. We suggest that a procedure of coarse graining and renormalising the fundamental field can overcome its noisiness and argue that this coarse grained renormalised field will show interesting structure if the state vector does on the coarse grained scale.Comment: 18 pages, 8 fugures, LaTeX, Reference added, discussion of probability distribution of labellings correcte

    High-Field Superconductivity at an Electronic Topological Transition in URhGe

    Full text link
    The emergence of superconductivity at high magnetic fields in URhGe is regarded as a paradigm for new state formation approaching a quantum critical point. Until now, a divergence of the quasiparticle mass at the metamagnetic transition was considered essential for superconductivity to survive at magnetic fields above 30 tesla. Here we report the observation of quantum oscillations in URhGe revealing a tiny pocket of heavy quasiparticles that shrinks continuously with increasing magnetic field, and finally disappears at a topological Fermi surface transition close to or at the metamagnetic field. The quasiparticle mass decreases and remains finite, implying that the Fermi velocity vanishes due to the collapse of the Fermi wavevector. This offers a novel explanation for the re-emergence of superconductivity at extreme magnetic fields and makes URhGe the first proven example of a material where magnetic field-tuning of the Fermi surface, rather than quantum criticality alone, governs quantum phase formation.Comment: A revised version has been accepted for publication in Nature Physic

    The Status of the Wave Function in Dynamical Collapse Models

    Full text link
    The idea that in dynamical wave function collapse models the wave function is superfluous is investigated. Evidence is presented for the conjecture that, in a model of a field theory on a 1+1 lightcone lattice, knowing the field configuration on the lattice back to some time in the past, allows the wave function or quantum state at the present moment to be calculated, to arbitrary accuracy so long as enough of the past field configuration is known.Comment: 35 pages, 11 figures, LaTex, corrected typos, some modifications made. to appear in Found. of Phys. Lett. Vol. 18, Nbr 6, Nov 2005, 499-51

    The Random Discrete Action for 2-Dimensional Spacetime

    Full text link
    A one-parameter family of random variables, called the Discrete Action, is defined for a 2-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this Discrete Action is calculated for various regions of 2D Minkowski spacetime. When a causally convex region of 2D Minkowski spacetime is divided into subregions using null lines the mean of the Discrete Action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to zero as the discreteness scale is taken to zero. This result is used to predict that the mean of the Discrete Action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The ``topological'' character of the Discrete Action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.Comment: 20 pages, 10 figures, Typos correcte
    corecore