40 research outputs found
Analysis of classifiers' robustness to adversarial perturbations
The goal of this paper is to analyze an intriguing phenomenon recently
discovered in deep networks, namely their instability to adversarial
perturbations (Szegedy et. al., 2014). We provide a theoretical framework for
analyzing the robustness of classifiers to adversarial perturbations, and show
fundamental upper bounds on the robustness of classifiers. Specifically, we
establish a general upper bound on the robustness of classifiers to adversarial
perturbations, and then illustrate the obtained upper bound on the families of
linear and quadratic classifiers. In both cases, our upper bound depends on a
distinguishability measure that captures the notion of difficulty of the
classification task. Our results for both classes imply that in tasks involving
small distinguishability, no classifier in the considered set will be robust to
adversarial perturbations, even if a good accuracy is achieved. Our theoretical
framework moreover suggests that the phenomenon of adversarial instability is
due to the low flexibility of classifiers, compared to the difficulty of the
classification task (captured by the distinguishability). Moreover, we show the
existence of a clear distinction between the robustness of a classifier to
random noise and its robustness to adversarial perturbations. Specifically, the
former is shown to be larger than the latter by a factor that is proportional
to \sqrt{d} (with d being the signal dimension) for linear classifiers. This
result gives a theoretical explanation for the discrepancy between the two
robustness properties in high dimensional problems, which was empirically
observed in the context of neural networks. To the best of our knowledge, our
results provide the first theoretical work that addresses the phenomenon of
adversarial instability recently observed for deep networks. Our analysis is
complemented by experimental results on controlled and real-world data
Image registration with sparse approximations in parametric dictionaries
We examine in this paper the problem of image registration from the new
perspective where images are given by sparse approximations in parametric
dictionaries of geometric functions. We propose a registration algorithm that
looks for an estimate of the global transformation between sparse images by
examining the set of relative geometrical transformations between the
respective features. We propose a theoretical analysis of our registration
algorithm and we derive performance guarantees based on two novel important
properties of redundant dictionaries, namely the robust linear independence and
the transformation inconsistency. We propose several illustrations and insights
about the importance of these dictionary properties and show that common
properties such as coherence or restricted isometry property fail to provide
sufficient information in registration problems. We finally show with
illustrative experiments on simple visual objects and handwritten digits images
that our algorithm outperforms baseline competitor methods in terms of
transformation-invariant distance computation and classification
Manitest: Are classifiers really invariant?
Invariance to geometric transformations is a highly desirable property of
automatic classifiers in many image recognition tasks. Nevertheless, it is
unclear to which extent state-of-the-art classifiers are invariant to basic
transformations such as rotations and translations. This is mainly due to the
lack of general methods that properly measure such an invariance. In this
paper, we propose a rigorous and systematic approach for quantifying the
invariance to geometric transformations of any classifier. Our key idea is to
cast the problem of assessing a classifier's invariance as the computation of
geodesics along the manifold of transformed images. We propose the Manitest
method, built on the efficient Fast Marching algorithm to compute the
invariance of classifiers. Our new method quantifies in particular the
importance of data augmentation for learning invariance from data, and the
increased invariance of convolutional neural networks with depth. We foresee
that the proposed generic tool for measuring invariance to a large class of
geometric transformations and arbitrary classifiers will have many applications
for evaluating and comparing classifiers based on their invariance, and help
improving the invariance of existing classifiers.Comment: BMVC 201
Multi-task additive models with shared transfer functions based on dictionary learning
Additive models form a widely popular class of regression models which
represent the relation between covariates and response variables as the sum of
low-dimensional transfer functions. Besides flexibility and accuracy, a key
benefit of these models is their interpretability: the transfer functions
provide visual means for inspecting the models and identifying domain-specific
relations between inputs and outputs. However, in large-scale problems
involving the prediction of many related tasks, learning independently additive
models results in a loss of model interpretability, and can cause overfitting
when training data is scarce. We introduce a novel multi-task learning approach
which provides a corpus of accurate and interpretable additive models for a
large number of related forecasting tasks. Our key idea is to share transfer
functions across models in order to reduce the model complexity and ease the
exploration of the corpus. We establish a connection with sparse dictionary
learning and propose a new efficient fitting algorithm which alternates between
sparse coding and transfer function updates. The former step is solved via an
extension of Orthogonal Matching Pursuit, whose properties are analyzed using a
novel recovery condition which extends existing results in the literature. The
latter step is addressed using a traditional dictionary update rule.
Experiments on real-world data demonstrate that our approach compares favorably
to baseline methods while yielding an interpretable corpus of models, revealing
structure among the individual tasks and being more robust when training data
is scarce. Our framework therefore extends the well-known benefits of additive
models to common regression settings possibly involving thousands of tasks
Robust image classification:analysis and applications
In the past decade, image classification systems have witnessed major advances that led to record performances on challenging datasets. However, little is known about the behavior of these classifiers when the data is subject to perturbations, such as random noise, structured geometric transformations, and other common nuisances (e.g., occlusions and illumination changes). Such perturbation models are likely to affect the data in a widespread set of applications, and it is therefore crucial to have a good understanding of the classifiers' robustness properties. We provide in this thesis new theoretical and empirical studies on the robustness of classifiers to perturbations in the data. Firstly, we address the problem of robustness of classifiers to adversarial perturbations. In this corruption model, data points undergo a minimal perturbation that is specifically designed to change the estimated label of the classifier. We provide an efficient and accurate algorithm to estimate the robustness of classifiers to adversarial perturbations, and confirm the high vulnerability of state-of-the-art classifiers to such perturbations. We then analyze theoretically the robustness of classifiers to adversarial perturbations, and show the existence of learning-independent limits on the robustness that reveal a tradeoff between robustness and classification accuracy. This theoretical analysis sheds light on the causes of the adversarial instability of state-of-the-art classifiers, which is crucial for the development of new methods that improve the robustness to such perturbations. Next, we study the robustness of classifiers in a novel semi-random noise regime that generalizes both the random and adversarial perturbation regimes. We establish precise theoretical bounds on the robustness of classifiers in this general regime, which depend on the curvature of the classifier's decision boundary. Our bounds show in particular that we have a blessing of dimensionality phenomenon: in high-dimensional classification tasks, robustness to random noise can be achieved, even if the classifier is extremely unstable to adversarial perturbations. We show however that, for semi-random noise that is mostly random and only mildly adversarial, state-of-the-art classifiers remain vulnerable to such noise. We further perform experiments and show that the derived bounds provide very accurate robustness estimates when applied to various state-of-the-art deep neural networks and different datasets. Finally, we study the invariance of classifiers to geometric deformations and structured nuisances, such as occlusions. We propose principled and systematic methods for quantifying the robustness of arbitrary image classifiers to such deformations, and provide new numerical methods for the estimation of such quantities. We conduct an in-depth experimental evaluation and show that the proposed methods allow us to quantify the gain in invariance that results from increasing the depth of a convolutional neural network, or from the addition of transformed samples to the training set. Moreover, we demonstrate that the proposed methods identify ``weak spots'' of classifiers by sampling from the set of nuisances that cause misclassification. Our results thus provide insights into the important features used by the classifier to distinguish between classes. Overall, we provide in this thesis novel quantitative results that precisely describe the behavior of classifiers under perturbations of the data. We believe our results will be used to objectively assess the reliability of classifiers in real-world noisy environments and eventually construct more reliable systems
Measuring the effect of nuisance variables on classifiers
In real-world classification problems, nuisance variables can cause wild variability in the data. Nuisance corresponds for example to geometric distortions of the image, occlusions, illumination changes or any other deformations that do not alter the ground truth label of the image. It is therefore crucial that designed classifiers are robust to nuisance variables, especially when these are deployed in real and possibly hostile environments. We propose in this paper a probabilistic framework for efficiently estimating the robustness of state-of-the-art classifiers and sampling problematic samples from the nuisance space. This allows us to visualize and understand the regions of the nuisance space that cause misclassification, in the perspective of improving robustness. Our probabilistic framework is applicable to arbitrary classifiers and potentially high-dimensional and complex nuisance spaces. We illustrate the proposed approach on several classification problems and compare classifiers in terms of their robustness to nuisances. Moreover, using our sampling technique, we visualize problematic regions in the nuisance space and infer insights into the weaknesses of classifiers as well as the features used in classification (e.g., in face recognition). We believe the proposed analysis tools represent an important step towards understanding large modern classification architectures and building architectures with better robustness to nuisance.LTS
Classification of unions of subspaces with sparse representations
We propose a preliminary investigation on the benefits and limitations of classifiers based on sparse representations. We specifically focus on the union of subspaces data model and examine binary classifiers built on a sparse non linear mapping (in a redundant dictionary) followed by a linear classifier. We study two common sparse non linear mappings (namely \ell_0 and \ell_1) and show that, in both cases, there exists a finite dictionary such that the classifier discriminates the two classes correctly. This result paves the way towards a better understanding of the increasingly popular classifiers based on sparse representatio