78 research outputs found

    The inhibition of FGF receptor 1 activity mediates sorafenib-induced antiproliferative effects in human mesothelioma tumor-initiating cells

    Get PDF
    Tumor-initiating cells (TICs), the subset of cells within tumors endowed with stem-like features, being highly resistant to conventional cytotoxic drugs, are the major cause of tumor relapse. The identification of molecules able to target TICs remains a significant challenge in cancer therapy. Using TIC-enriched cultures (MM1, MM3 and MM4), from 3 human malignant pleural mesotheliomas (MPM), we tested the effects of sorafenib on cell survival and the intracellular mechanisms involved. Sorafenib inhibited cell-cycle progression in all the TIC cultures, but only in MM3 and MM4 cells this effect was associated with induction of apoptosis via the down-regulation of Mcl-1. Although sorafenib inhibits the activity of several tyrosine kinases, its effects are mainly ascribed to Raf inhibition. To investigate the mechanisms of sorafenib-mediated antiproliferative activity, TICs were treated with EGF or bFGF causing, in MM3 and MM4 cells, MEK, ERK1/2, Akt and STAT3 phosphorylation. These effects were significantly reduced by sorafenib in bFGF-treated cells, while a slight inhibition occurred after EGF stimulation, suggesting that sorafenib effects are mainly due to FGFR inhibition. Indeed, FGFR1 phosphorylation was inhibited by sorafenib. A different picture was observed in MM1 cells, which, releasing high levels of bFGF, showed an autocrine activation of FGFR1 and a constitutive phosphorylation/activation of MEK-ERK1/2. A powerful inhibitory response to sorafenib was observed in these cells, indirectly confirming the central role of sorafenib as FGFR inhibitor. These results suggest that bFGF signaling may impact antiproliferative response to sorafenib of MPM TICs, which is mainly mediated by a direct FGFR targeting

    Combined chemotherapy with cytotoxic and targeted compounds as new strategy for management of human malignant pleural mesothelioma

    No full text
    Human malignant pleural mesothelioma (hMPM) is an aggressive asbestos-associated cancer, the incidence of which is increasing and which, despite progress in diagnosis and therapy, continues to have a poor prognosis. Asbestos fibers induce aberrant cell signaling, leading to proto-oncogene activation and chemoresistance. In this review, we discuss the evolution of pharmacological management of hMPM up to the most recent advances. Monotherapy with single cytotoxic drugs achieves modest objective response rates, seldom reaching 30%. However, combination regimens using novel drugs and standard molecules are showing gradually improving responses and clinical benefits. Phase II/III studies have identified pemetrexed, a multitarget folate pathway inhibitor in combination with platinum derivatives, and the cisplatin/gemcitabine association as front-line chemotherapy for hMPM. Detailed knowledge of molecular mechanisms of signal transduction and neoangiogenesis in hMPM should aid in the design and screening of other promising compounds such as more efficacious receptor tyrosine kinase inhibitors
    • 

    corecore