16 research outputs found

    Polygalacturonase isoenzymes and oxalic acid produced by Sclerotinia sclerotiorum in soybean hypocotyls as elicitors of glyceollin

    No full text
    The polygalacturonases (PG) and oxalic acid produced by Sclerotinia sclerotiorum in infected soybean hypocotyls were investigated as elicitors of the phytoalexin glyceollin I. Purification to homogeneity through isoelectrofocusing and ion-exchange fast protein liquid chromatography revealed three endo-PG isoenzymes (PG-I, PG-II and PG-IV) and one exo-PG (PG-III) in 6-day-old etiolated soybean hypocotyls infected with the B-24 isolate of S. sclerotiorum. PG-I and PG-III, in the range of concentrations tested (0·15-1·2 reducing units ml-1), did not act as elicitors of glyceollin I synthesis. Some elicitor activity was shown by PG-II at 0·6-1·2 reducing units ml-1. PG-IV, at lower doses (0·038-0·30 reducing units ml-1), was even more effective in inducing phytoalexin synthesis. However higher concentrations of PG-IV induced tissue softening and decreased phytoalexin accumulation. PG-II and PG-IV released heat-stable elicitors from purified soybean cell walls supporting the evidence that uronides are intermediate inducers in elicitation by endo-PGs. Oxalic acid was an active elicitor of glyceollin I over the range of concentrations tested (0·31-20 mm) with the maximum at a concentration of 5 mm. The inability of oxalic acid to release uronides from purified cell walls makes it unlikely that uronide intermediate elicitors are involved in elicitation by oxalic acid

    Pathways for Ca2+ Efflux in Heart and Liver Mitochondria

    No full text
    1. Two processes of Ruthenium Red-insensitive Ca2+ efflux exist in liver and in heart mitochondria: one Na+-independent, and another Na+-dependent. The processes attain maximal rates of 1.4 and 3.0 nmol of Ca2+.min-1.mg-1 for the Na+-dependent and 1.2 and 2.0 nmol of Ca2+.min-1.mg-1 for the Na+-independent, in liver and heart mitochondria, respectively. 2. The Na+-dependent pathway is inhibited, both in heart and in liver mitochondria, by the Ca2+ antagonist diltiazem with a Ki of 4 microM. The Na+-independent pathway is inhibited by diltiazem with a Ki of 250 microM in liver mitochondria, while it behaves as almost insensitive to diltiazem in heart mitochondria. 3. Stretching of the mitochondrial inner membrane in hypo-osmotic media results in activation of the Na+-independent pathway both in liver and in heart mitochondria. 4. Both in heart and liver mitochondria the Na+-independent pathway is insensitive to variations of medium pH around physiological values, while the Na+-dependent pathway is markedly stimulated parallel with acidification of the medium. The pH-activated, Na+-dependent pathway maintains the diltiazem sensitivity. 5. In heart mitochondria, the Na+-dependent pathway is non-competitively inhibited by Mg2+ with a Ki of 0.27 mM, while the Na+-independent pathway is less affected; similarly, in liver mitochondria Mg2+ inhibits the Na+-dependent pathway more than it does the Na+-independent pathway. In the presence of physiological concentrations of Na+, Ca2+ and Mg2+, the Na+-independent and the Na+-dependent pathways operate at rates, respectively, of 0.5 and 1.0 nmol of Ca2+.min-1.mg-1 in heart mitochondria and 0.9 and 0.2 nmol of Ca2+.min-1.mg-1 in liver mitochondria. It is concluded that both heart and liver mitochondria possess two independent pathways for Ca2+ efflux operating at comparable rates

    Laramed: A laboratory for radioisotopes of medical interest

    Get PDF
    The widespread availability of novel radioactive isotopes showing nuclear characteristics suitable for diagnostic and therapeutic applications in nuclear medicine (NM) has experienced a great development in the last years, particularly as a result of key advancements of cyclotron-based radioisotope production technologies. At Legnaro National Laboratories of the National Institute of Nuclear Physics (LNL-INFN), Italy, a 70-MeV high current cyclotron has been recently installed. This cyclotron will be dedicated not only to pursuing fundamental nuclear physics studies, but also to research related to other scientific fields with an emphasis on medical applications. LARAMED project was established a few years ago at LNL-INFN as a new research line aimed at exploiting the scientific power of nuclear physics for developing innovative applications to medicine. The goal of this program is to elect LNL as a worldwide recognized hub for the development of production methods of novel medical radionuclides, still unavailable for the scientific and clinical community. Although the research facility is yet to become fully operative, the LARAMED team has already started working on the cyclotron production of conventional medical radionuclides, such as Tc-99m, and on emerging radionuclides of high potential medical interest, such as Cu-67, Sc-47, and Mn-52

    Tissue-Specific Modulation of the Mitochondrial Calcium Uniporter by Magnesium Ions

    Get PDF
    This paper analyzes the kinetics of the Ca2+ uniporter of mitochondria from rat heart, kidney and liver operating in a range of Ca2+ concentrations near the steady-state value (1-4 microM). Heart mitochondria exhibit the lowest activity, and physiological Mg2+ concentrations inhibit the mitochondrial Ca2+ uniporter by approx. 50% in heart and kidney, and by 20% in liver. At physiological Ca2+ and Mg2+ concentrations the external free Ca2+ maintained by respiring mitochondria in vitro is higher in heart and kidney with respect to liver mitochondria. This behaviour could represent an adaptation of different mitochondria to their specific intracellular environment
    corecore