759 research outputs found

    Equine influenza in Brazil

    Get PDF
    Equine influenza virus (EIV) (H3N8 and H7N7) is the causative agent of equine influenza, or equine flu. The H7N7 subtype has been considered to be extinct worldwide since 1980. Affected animals have respiratory symptoms that can be worsened by secondary bacterial respiratory infection, thereby leading to great economic losses in the horse-breeding industry. In Brazil, equine influenza outbreaks were first reported in 1963 and studies on hemagglutination antibodies against viral subtypes in Brazilian horses have been conducted since then. The objective of the present review was to present the history of the emergence of EIV around the world and in Brazil and the studies that have thus far been developed on EIV in Brazilian equines.O vírus da influenza equina (EIV) (H3N8 e H7N7) é o agente causador da influenza equina, ou gripe equina. O subtipo viral H7N7 é considerado como mundialmente extinto desde 1980. Os animais afetados têm sintomas respiratórios característicos que podem ser agravados por uma infecção respiratória bacteriana secundária causando grandes prejuízos no ramo equestre. No Brasil, os surtos da EI têm sido relatados desde 1963 e desde então vem sendo efetuados estudos sobre a presença de anticorpos hemaglutinantes contra os subtipos virais nos equídeos brasileiros. O presente artigo tem o objetivo de apresentar um histórico sobre o surgimento do EIV no mundo e no Brasil destacando os estudos conduzidos no Brasil até o momento acerca da infecção pelo EIV nos equídeos brasileiros

    Graphene oxide sheets-based platform for induced pluripotent stem cells culture: toxicity, adherence, growth and application

    Get PDF
    It was prepared the graphene oxide (GO) sheets by suspension of GO in ultrapure deionized water or in Pluronic F-68 using a ultrasonicator bath. Total characterization of GO sheets was carried out. The results on suspension of GO in water showed excellent growth and cell adhesion. GO/Pluronic F-68 platform for the growth and adhesion of adipose-derived stem cells (ASCs) that exhibits excellent properties for these processes. GO in water suspension exhibited an inhibition of the cell growth over 5 mu g/mL In vivo study with GO suspended in water (100 g/mL) on Fisher 344 rats via i.p. administration showed low toxicity. Despite GO particle accumulates in the intraperitoneal cavity, this fact did not interfere with the final absorption of GO. The AST (aspartate aminotransferase) and ALT (alanine aminotransferase) levels (liver function) did not differ statistically in all experimental groups. Also, creatinine and urea levels (renal function) did not differ statistically in all experimental groups. Taking together, the data suggest the great potential of graphene oxide sheets as platform to ACSs, as well as, new material for treatment several urological diseases6174th International Conference on Safe Production and Use of Nanomaterials (Nanosafe

    Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells

    Get PDF
    BCR-ABL kinase activates downstream signaling pathways, including the PI3K-Akt/mTOR and the MAPK pathway. IRS1 has been previously described as constitutively phosphorylated and associated with BCR-ABL in K562 cells, suggesting that IRS1 has role in the BCR-ABL signaling pathways. in this study, we analyzed the effect of IRS1 silencing, by shRNA-lentiviral delivery, in K562 cells, a CML cell line that presents the BCR-ABL. IRS1 silencing decreased cell proliferation and colony formation in K562 cells, which correlates with the delay of these cells at the G0/G1 phase and a decrease in the S phase of the cell cycle. Furthermore, IRS1 silencing in K562 cells resulted in a decrease of Akt, P70S6K and ERK1/2 phosphorylation. Nevertheless, apoptosis was unaffected by IRS1 knockdown and no alterations were found in the phosphorylation of BAD and in the expression of BCL2 and BAX. BCR-ABL and CRKL phosphorylation levels remained unaffected upon IRS1 silencing, and no synergistic effect was observed with imatinib treatment and IRS1 knockdown, indicating that IRS1 is downstream from BCR-ABL in conclusion, we demonstrated that inhibition of IRS1 is capable of inducing the downregulation of Akt/mTOR and MAPK pathways and further decreasing proliferation, and clonogenicity and induces to cell cycle delay at G0/G1 phase in BCR-ABL cells. (C) 2011 Elsevier B.V. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Campinas, Hematol & Hemotherapy Ctr, UNICAMP, Hemoctr,Inst Nacl Ciencia & Tecnol Sangue, BR-13083878 Campinas, SP, BrazilUniversidade Federal de São Paulo, Dept Biol Sci, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biol Sci, São Paulo, BrazilWeb of Scienc

    ANKHD1 regulates cell cycle progression and proliferation in multiple myeloma cells

    Get PDF
    ANKHD1 is a multiple ankyrin repeat containing protein, highly expressed in cancers, such as acute leukemia. the present study was undertaken to determine the expression and functional significance of ANKHD1 in human Multiple Myeloma (MM). We found that ANKHD1 is highly expressed in MM patient cells and cell lines. in vitro, lentiviral mediated ANKHD1-shRNA inhibited proliferation and delayed S to G2M cell cycle progression in glucocorticoid resistant (U266) and sensitive (MM1S) MM cells. Further ANKHD1 silencing resulted in upregulation of cyclin dependent kinase inhibitor p21 irrespective of the p53 status of the MM cell lines. These data suggest that ANKHD1 might have a role in MM cell proliferation and cell cycle progression by regulating expression of p21. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.Instituto Nacional de Ciencia e Tecnologia do Sangue(INCTS)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Campinas Hemoctr Unicamp, Hematol & Hemotherapy Ctr, Inst Nacl Ciencia & Tecnol Sangue, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biol Sci, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biol Sci, São Paulo, BrazilWeb of Scienc

    De novo AML exhibits greater microenvironment dysregulation compared to AML with myelodysplasia-related changes

    Get PDF
    The interaction between the bone marrow microenvironment and malignant hematopoietic cells can result in the protection of leukemia cells from chemotherapy in both myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). We, herein, characterized the changes in cytokine expression and the function of mesenchymal stromal cells (MSC) in patients with MDS, AML with myelodysplasia-related changes (MRC), a well-recognized clinical subtype of secondary AML, and de novo AML. We observed a significant inhibitory effect of MDS-MSC on T-lymphocyte proliferation and no significant differences in any of the cytokines tested. AML-MSC inhibited T-cell proliferation only at a very low MSC/T cell ratio. When compared to the control, AML-MRC-derived MSC presented a significant increase in IL6 expression, whereas de novo AML MSC presented a significant increase in the expression levels of VEGFA, CXCL12, RPGE2, IDO, IL1 beta, IL6 and IL32, followed by a decrease in IL10 expression. Furthermore, data indicate that IL-32 regulates stromal cell proliferation, has a chemotactic potential and participates in stromal cell crosstalk with leukemia cells, which could result in chemoresistance. Our results suggest that the differences between AML-MRC and de novo AML also extend into the leukemic stem cell niche and that IL-32 can participate in the regulation of the bone marrow cytokine milieu.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Univ Estadual Campinas, Hematol & Transfus Med Ctr, Hemoctr Unicamp, Inst Nacl Ciencia & Tecnol Sangue, Sao Paulo, BrazilUniv Sao Paulo, Ribeirao Preto Med Sch, Dept Internal Med, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Biol Sci, Sao Paulo, BrazilFed Univ Vale do Sao Francisco, Paulo Afonso, BA, BrazilUniv Fed Sao Paulo, Dept Biol Sci, Sao Paulo, BrazilWeb of Scienc

    Encapsulation of active pharmaceutical ingredients in lipid micro/nanoparticles for oral administration by spray-cooling

    Get PDF
    Nanoencapsulation via spray cooling (also known as spray chilling and spray congealing) has been used with the aim to improve the functionality, solubility, and protection of drugs; as well as to reduce hygroscopicity; to modify taste and odor to enable oral administration; and many times to achieve a controlled release profile. It is a relatively simple technology, it does not require the use of low-cost solvents (mostly associated to toxicological risk), and it can be applied for lipid raw materials as excipients of oral pharmaceutical formulations. The objective of this work was to revise and discuss the advances of spray cooling technology, with a greater emphasis on the development of lipid micro/nanoparticles to the load of active pharmaceutical ingredients for oral administration.This research was funded by the Portuguese Science and Technology Foundation (FCT/MCT) and European Funds (PRODER/COMPETE), under the project reference UIDB/04469/2020 (strategic fund), co-financed by FEDER, under the Partnership Agreement PT2020, granted to Eliana B. Souto. This work was also supported by the National Science Centre within the MINIATURA 4 for a single research activity carried out by Aleksandra Zieli ´nska (grant no: 2020/04/X/ST5/00789), and by the Institute of Human Genetics, Polish Academy of Sciences by the internal grant for the implementation of a single scientific activity.info:eu-repo/semantics/publishedVersio

    Probing the Biosafety of Implantable Artificial Secretory Granules for the Sustained Release of Bioactive Proteins

    Get PDF
    Altres ajuts: acords transformatius de la UABAmong bio-inspired protein materials, secretory protein microparticles are of clinical interest as self-contained, slow protein delivery platforms that mimic secretory granules of the human endocrine system, in which the protein is both the drug and the scaffold. Upon subcutaneous injection, their progressive disintegration results in the sustained release of the building block polypeptides, which reach the bloodstream for systemic distribution and subsequent biological effects. Such entities are easily fabricated in vitro by Zn-assisted cross-molecular coordination of histidine residues. Using cationic Zn for the assembly of selected pure protein species and in the absence of any heterologous holding material, these granules are expected to be nontoxic and therefore adequate for different clinical uses. However, such presumed biosafety has not been so far confirmed and the potential protein dosage threshold not probed yet. By selecting the receptor binding domain (RBD) from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein as a model protein and using a mouse lab model, we have explored the toxicity of RBD-made secretory granules at increasing doses up to ∼100 mg/kg of animal weight. By monitoring body weight and biochemical blood markers and through the histological scrutiny of main tissues and organs, we have not observed systemic toxicity. Otherwise, the bioavailability of the material was demonstrated by the induction of specific antibody responses. The presented data confirm the intrinsic biosafety of artificial secretory granules made by recombinant proteins and prompt their further clinical development as self-contained and dynamic protein reservoirs

    Stathmin 1 Inhibition Amplifies Ruxolitinib-induced Apoptosis In Jak2v617f Cells.

    Get PDF
    The JAK/STAT pathway is constitutively activated in myeloproliferative neoplasms and can be inhibited by ruxolitinib, a selective JAK1/2 inhibitor. The JAK2(V617F) mutation leads to constitutive STAT3 phosphorylation and potentially leads to inhibition of Stathmin 1 activity via STAT3. In support of this hypothesis, we found that, in HEL JAK2(V617F) cells, ruxolitinib treatment decreased STAT3 and Stathmin 1 association, induced Stathmin 1 activation and microtubule instability. Silencing of Stathmin 1 significantly reduced cell proliferation and clonal growth, and increased apoptosis induced by ruxolitinib. Stathmin 1 silencing also prevented ruxolitinib-induced microtubule instability. To phenocopy the effect of Stathmin 1 inhibition, cells were treated with paclitaxel, a microtubule-stabilizing drug, in association or not with ruxolitinib; combined treatment significantly increased apoptosis, when compared to monotherapy. Notably, Stathmin 1 mRNA levels were highly expressed in CD34(+) cells from primary myelofibrosis patients. We then proposed that an undesired effect of ruxolitinib treatment may constitute Stathmin 1 activation and microtubule instability in JAK2(V617F) cells. Induction of microtubule stability, through Stathmin 1 silencing or paclitaxel treatment, combined with ruxolitinib could be an effective strategy for promoting apoptosis in JAK2(V617F) cells.629573-2958
    corecore