12 research outputs found

    In vivo and in vitro proinflammatory effects of particulate air pollution (PM10).

    Get PDF
    Epidemiologic studies have reported associations between fine particulate air pollution, especially particles less than 10 mm in diameter (PM10), and the development of exacerbations of asthma and chronic obstructive pulmonary disease. However, the mechanism is unknown. We tested our hypothesis that PM10 induces oxidant stress, causing inflammation and injury to airway epithelium. We assessed the effects of intratracheal instillation of PM10 in rat lungs. The influx of inflammatory cells was measured in bronchoalveolar lavage (BAL). Airspace epithelial permeability was assessed as total protein in bronchoalveolar lavage fluid (BALF) in vivo. The oxidant properties of PM10 were determined by their ability to cause changes in reduced glutathione (GSH) and oxidized glutathione (GSSG). We also compared the effects of PM10 with those of fine (CB) and ultrafine (ufCB) carbon black particles. Six hours after intratracheal instillation of PM10, we noted an influx of neutrophils (up to 15% of total BAL cells) in the alveolar space, increased epithelial permeability, an increase in total protein in BALF from 0.39 +/- 0.01 to 0.62 +/- 0.01 mg/ml (mean +/- SEM) and increased lactate dehydrogenase concentrations in BALF. An even greater inflammatory response was observed after intratracheal instillation of ufCB, but not after CB instillation. PM10 had oxidant activity in vivo, as shown by decreased GSH in BALF (from 0.36 +/- 0.05 to 0.25 +/- 0.01 nmol/ml) after instillation. BAL leukocytes from rats treated with PM10 produced greater amounts of nitric oxide, measured as nitrite (control 3.07 +/- 0.33, treated 4.45 +/- 0.23 mM/1 x 10(6) cells) and tumor necrosis factor alpha (control 21.0 +/- 3.1, treated 179.2 +/- 29.4 unit/1 x 10(6) cells) in culture than BAL leukocytes obtained from control animals. These studies provide evidence that PM10 has free radical activity and causes lung inflammation and epithelial injury. These data support our hypothesis concerning the mechanism for the adverse effects of particulate air pollution on patients with airway diseases

    In vitro determinants of particulate toxicity The dose-metric for poorly soluble dusts

    No full text
    Includes bibliographical referencesSIGLEAvailable from British Library Document Supply Centre- DSC:7761. 864(154) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females

    No full text
    Variants in CLCN4, which encodes the chloride/hydrogen ion exchanger CIC-4 prominently expressed in brain, were recently described to cause X-linked intellectual disability and epilepsy. We present detailed phenotypic information on 52 individuals from 16 families with CLCN4-related disorder: 5 affected females and 2 affected males with a de novo variant in CLCN4 (6 individuals previously unreported) and 27 affected males, 3 affected females and 15 asymptomatic female carriers from 9 families with inherited CLCN4 variants (4 families previously unreported). Intellectual disability ranged from borderline to profound. Behavioral and psychiatric disorders were common in both child- and adulthood, and included autistic features, mood disorders, obsessive–compulsive behaviors and hetero- and autoaggression. Epilepsy was common, with severity ranging from epileptic encephalopathy to well-controlled seizures. Several affected individuals showed white matter changes on cerebral neuroimaging and progressive neurological symptoms, including movement disorders and spasticity. Heterozygous females can be as severely affected as males. The variability of symptoms in females is not correlated with the X inactivation pattern studied in their blood. The mutation spectrum includes frameshift, missense and splice site variants and one single-exon deletion. All missense variants were predicted to affect CLCN4’s function based on in silico tools and either segregated with the phenotype in the family or were de novo. Pathogenicity of all previously unreported missense variants was further supported by electrophysiological studies in Xenopus laevis oocytes. We compare CLCN4-related disorder with conditions related to dysfunction of other members of the CLC family
    corecore