43 research outputs found
Recommended from our members
Purkinje cell axonal torpedoes are unrelated to advanced aging and likely reflect cerebellar injury
Torpedoes, swellings of the proximal Purkinje cell axon, are thought to represent a cellular response to injury [3]. They may occur in a variety of cerebellar disorders [7]. Most recently, their numbers were noted to be six-times higher in essential tremor (ET) than control brains [4]. Torpedoes are also often viewed as a cumulative phenomenon associated with advanced aging [3,4], yet there are surprisingly few supporting data. We quantified torpedoes in normal human cerebella spanning a considerable age range to assess whether torpedoes are a cumulative phenomenon of aging. These data help place the relative abundance of torpedoes in ET in context
Recommended from our members
Structural study of Purkinje cell axonal torpedoes in essential tremor
Essential tremor (ET) is one of the most common neurological diseases. A basic understanding of its neuropathology is now emerging. Aside from Purkinje cell loss, a prominent finding is an abundance of torpedoes (rounded swellings of Purkinje cell axons). Such swellings often result from the mis-accumulation of cell constituents. Identifying the basic nature of these accumulations is an important step in understanding the underlying disease process. Torpedoes, only recently identified in ET, have not yet been characterized ultrastructurally. Light and electron microscopy were used to characterize the structural constituents of torpedoes in ET. Formalin-fixed cerebellar cortical tissue from four prospectively collected ET brains was sectioned and immunostained with a monoclonal phosphorylated neurofilament antibody (SMI-31, Covance, Emeryville, CA). Using additional sections from three ET brains, torpedoes were assessed using electron microscopy. Immunoreactivity for phosphorylated neurofilament protein revealed clear labeling of torpedoes in each case. Torpedoes were strongly immunoreactive; in many instances, two or more torpedoes were noted in close proximity to one another. On electron microscopy, torpedoes were packed with randomly arranged 10–12 nm neurofilaments. Mitochondria and smooth endoplasmic reticulum were abundant as well, particularly at the periphery of the torpedo. We demonstrated that the torpedoes in ET represent the mis-accumulation of disorganized neurofilaments and other organelles. It is not known where in the pathogenic cascade these accumulations occur (i.e., whether these accumulations are the primary event or a secondary/downstream event) and this deserves further study
Recommended from our members
The distribution and density of Huntingtin inclusions across the Huntington disease neocortex: regional correlations with Huntingtin repeat expansion independent of pathologic grade
Huntington disease is characterized by progressive neurodegeneration, especially of the striatum, and the presence of polyglutamine huntingtin (HTT) inclusions. Although HTT inclusions are most abundant in the neocortex, their neocortical distribution and density in relation to the extent of CAG repeat expansion in the HTT gene and striatal pathologic grade have yet to be formally established. We immunohistochemically studied 65 brains with a pathologic diagnosis of Huntington disease to investigate the cortical distributions and densities of HTT inclusions within the calcarine (BA17), precuneus (BA7), motor (BA4) and prefrontal (BA9) cortices; in 39 of these brains, a p62 immunostain was used for comparison. HTT inclusions predominate in the infragranular cortical layers (layers V-VI) and layer III, however, the densities of HTT inclusions across the human cerebral cortex are not uniform but are instead regionally contingent. The density of HTT and p62 inclusions (intranuclear and extranuclear) in layers V-VI increases caudally to rostrally (BA17 < BA7 < BA4 < BA9) with the median burden of HTT inclusions being 38-fold greater in the prefrontal cortex (BA9) than in the calcarine cortex (BA17). Conversely, intranuclear HTT inclusions prevail in the calcarine cortex irrespective of HTT CAG length. Neocortical HTT inclusion density correlates with CAG repeat expansion, but not with the neuropathologic grade of striatal degeneration (Vonsattel grade) or with the duration of clinical disease since motor onset. Extrapolation of these findings suggest that HTT inclusions are at a regionally-contingent, CAG-dependent, density during the advanced stages of HD. The distribution and density of HTT inclusions in HD therefore does not provide a measure of pathologic disease stage but rather infers the degree of pathogenic HTT expansion
Recommended from our members
Reduced Purkinje cell number in essential tremor : a postmortem study
Background: Clinical and functional imaging evidence suggests that cerebellar dysfunction occurs in essential tremor (ET). In recent postmortem studies, we documented increased numbers of torpedoes (Purkinje cell axonal swellings) in ET patients without Lewy bodies. Purkinje cell loss, however, has never been rigorously assessed. Objective: To quantitatively assess the number of Purkinje cells in brains of ET patients and similarly aged controls. Methods: Postmortem cerebellar tissue was available in 14 ET cases (6 with Lewy bodies and 8 without Lewy bodies) and 11 controls. Calbindin immunohistochemistry was performed on paraffin sections of the cerebellum. Images were digitally recorded and blinded measurements of the number of Purkinje cells per millimeter of cell layer (linear density) were made. Results: Purkinje cell linear density was inversely correlated with age (r=-0.53, P=.006) and number of torpedoes (r=-0.42, P=.04). Purkinje cell linear density differed by diagnosis (mean [SD], controls, 3.46 [1.27] cells/mm; ET cases with Lewy bodies, 3.33 [1.06] cells/mm; and ET cases without Lewy bodies, 2.14 [0.82] cells/mm; P=.04), with the most significant difference between ET cases without Lewy bodies and controls, where the reduction was 38.2% (P=.04). In an adjusted linear regression analysis that compared ET cases without Lewy bodies with controls, decreased linear density (outcome variable) was associated with ET (β=.56, P=.03). Conclusions: We demonstrated a reduction in Purkinje cell number in the brains of patients with ET who do not have Lewy bodies. These data further support the view that the cerebellum is anatomically, as well as functionally, abnormal in these ET cases
Recommended from our members
Older onset essential tremor : more rapid progression and more degenerative pathology
There are few data on rate of progression in essential tremor (ET). To quantify the rate of tremor progression in a cross-sectional sample of 348 ET cases in an epidemiological study; characterize the relationship between age of tremor onset and rate of tremor progression in that sample; and characterize the relationship between age of tremor onset, rate of tremor progression, and severity of underlying brain changes in 9 cases from a brain repository. Rate of tremor progression was defined as tremor severity divided by duration. The degeneration index = number of torpedoes per section divided by Purkinje cell linear density. In the epidemiological study, older age of tremor onset was associated with faster rate of tremor progression (P < 0.001). In the brain repository, older age of tremor onset was associated with higher degeneration index (P = 0.037), and higher degeneration index was associated with faster rate of tremor progression (P = 0.018). In a large clinical sample, older age of onset was associated with more rapid tremor progression. In a brain bank, older age of onset was associated with more degenerative pathology in the cerebellum. As in several neurodegenerative disorders, in older onset cases, it is possible that the disease advances more rapidly
Recommended from our members
Torpedoes in Parkinson's disease, Alzheimer's disease, essential tremor, and control brains
Purkinje cell axonal swellings ("torpedoes"), described in several cerebellar
disorders as well as essential tremor (ET), have not been quantified in common neurodegenerative
conditions
Recommended from our members
Inferior Olivary nucleus degeneration does not lessen tremor in essential tremor
Background
In traditional models of essential tremor, the inferior olivary nucleus was posited to play a central role as the pacemaker for the tremor. However, recent data call this disease model into question.
Case presentation
Our patient had progressive, long-standing, familial essential tremor. Upper limb tremor began at age 10 and worsened over time. It continued to worsen during the nine-year period he was enrolled in our brain donation program (age 85 – 94 years), during which time the tremor moved from the moderate to severe range on examination. On postmortem examination at age 94, there were degenerative changes in the cerebellar cortex, as have been described in the essential tremor literature. Additionally, there was marked degeneration of the inferior olivary nucleus, which was presumed to be of more recent onset. Such degeneration has not been previously described in essential tremor postmortems. Despite the presence of this degeneration, the patient’s tremor not only persisted but it continued to worsen during the final decade of his life.
Conclusions
Although the pathophysiology of essential tremor is not completely understood, evidence such as this suggests that the inferior olivary nucleus does not play a critical role in the generation of tremor in these patients
Recommended from our members
A TSC signaling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
Subcellular localization is emerging as an important mechanism for mTORC1 regulation. We report that the tuberous sclerosis complex (TSC) signaling node, TSC1, TSC2 and Rheb, localizes to peroxisomes, where it regulates mTORC1 in response to reactive oxygen species (ROS). TSC1 and TSC2 were bound by PEX19 and PEX5, respectively, and peroxisome-localized TSC functioned as a Rheb GAP to suppress mTORC1 and induce autophagy. Naturally occurring pathogenic mutations in TSC2 decreased PEX5 binding, abrogated peroxisome localization, Rheb GAP activity, and suppression of mTORC1 by ROS. Cells lacking peroxisomes were deficient in mTORC1 repression by ROS and peroxisome-localization deficient TSC2 mutants caused polarity defects and formation of multiple axons in neurons. These data identify a role for TSC in responding to ROS at the peroxisome, and identify the peroxisome as a signaling organelle involved in regulation of mTORC1