45 research outputs found

    Gustatory Imagery Reveals Functional Connectivity from the Prefrontal to Insular Cortices Traced with Magnetoencephalography

    Get PDF
    Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the 'top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG). Gustatory imagery tasks were presented by words (Letter G-V) or pictures (Picture G-V) of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8%) participants showed activation in the IC with a latency of 401.7 +/- 34.7 ms (n = 7) from the onset of word exhibition. In 5/7 (71.4%) participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2 +/- 56.5 ms (n = 5), which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7%) participants, and only 1/9 (11.1%) participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC

    The Human Sweet Tooth

    Get PDF
    Humans love the taste of sugar and the word "sweet" is used to describe not only this basic taste quality but also something that is desirable or pleasurable, e.g., la dolce vita. Although sugar or sweetened foods are generally among the most preferred choices, not everyone likes sugar, especially at high concentrations. The focus of my group's research is to understand why some people have a sweet tooth and others do not. We have used genetic and molecular techniques in humans, rats, mice, cats and primates to understand the origins of sweet taste perception. Our studies demonstrate that there are two sweet receptor genes (TAS1R2 and TAS1R3), and alleles of one of the two genes predict the avidity with which some mammals drink sweet solutions. We also find a relationship between sweet and bitter perception. Children who are genetically more sensitive to bitter compounds report that very sweet solutions are more pleasant and they prefer sweet carbonated beverages more than milk, relative to less bitter-sensitive peers. Overall, people differ in their ability to perceive the basic tastes, and particular constellations of genes and experience may drive some people, but not others, toward a caries-inducing sweet diet. Future studies will be designed to understand how a genetic preference for sweet food and drink might contribute to the development of dental caries

    Cerebral Imaging in Taste

    Full text link

    化学感覚受容のしくみ 味覚の脳機構

    Full text link

    Functional lateralization of human gustatory cortex related to handedness disclosed by fMRI study.

    Full text link
    International audienceTen healthy subjects aged 20-25 including five right-handed and five left-handed according to the Dellatolas test participated in this functional magnetic resonance imaging (fMRI) study. A 3 Tesla whole-body MR scanner allowed echo planar imaging (EPI)-64 x 64 pixels, repetition time (TR) = 6 s, field of view (FOV) = 20 x 20 cm2--associated to acute anatomical localization of activated foci (256 x 256 pixels). Subjects were bilaterally stimulated with NaCl 85 mM, aspartame 2 mM, quinine hydrochloride 1 mM, glycyrrhizic acid 0.5 mM, guanosine monophosphate 1 mM and D-threonine 250 mM alternating with water. Stimuli and rinse were continuously pushed as bolus of 50 microliters every 3 s to the subject's mouth through microsyringes. We detected brain activated areas by correlation of the MR signal to an on-line perception profile recorded for each experiment and each subject with the finger-span method. We found most activations in the insula and the perisylvian region in agreement with previous electrophysiological studies on monkeys and clinical reports in humans. The superior part of the insula was bilaterally activated, in accordance with a whole-mouth stimulation. A striking lateralization related to handedness was found in a lower part of the insula. This projection in the dominant hemisphere, located in the same coronal plane as the upper insular activation, is the first evidence of a functional lateralization of brain processing involved in taste perception

    Latencies in fMRI time-series: effect of slice acquisition order and perception.

    Full text link
    International audienceIn BOLD fMRI a detailed analysis of the MRI signal time course sometimes shows time differences between different activated regions. Some researchers have suggested that these latencies could be used to infer the temporal order of activation of these cortical regions. Several effects must be considered, however, before interpreting these latencies. The effect of a slice-dependent time shift (SDTS) with multi-slice acquisitions, for instance, may be important for regions located on different slices. After correction for this SDTS effect the time dispersion between activated regions is significantly decreased and the correlation between the MRI signal time course and the stimulation paradigm is improved. Another effect to consider is the latency which may exist between perception and stimulus presentation. It is shown that the control of perception can be achieved using a finger-spanning technique during the fMRI acquisition. The use of this perception profile rather than an arbitrary waveform derived from the paradigm proves to be a powerful alternative to fMRI data processing, especially with chemical senses studies, when return to baseline is not always correlated to stimulus suppression. This approach should also be relevant to other kinds of stimulation tasks, as a realistic way of monitoring the actual task performance, which may depend on attention, adaptation, fatigue or even variability of stimulus presentation

    Interaction of gustatory and lingual somatosensory perceptions at the cortical level in the human: a functional magnetic resonance imaging study.

    Full text link
    International audienceThe present study has investigated interaction at the cortical level in the human between two major components of flavor perception, pure chemical gustatory and lingual somatosensory perception. Twelve subjects participated in a functional magnetic resonance imaging study and tasted six stimuli, applied on the whole tongue, among which four were pure gustatory stimuli (NaCl, aspartame, quinine and HCl, pH 2.4 or 2.2) and two were both taste and lingual somatosensory stimuli, i.e. somato-gustatory stimuli (HCl, pH 1.6 or 1.5, and aluminum potassium sulfate). Functional images were acquired with an echo planar sequence on a 3 T system and were individually processed by correlation with the temporal perception profile. Both sets of stimuli showed activation in the same cortical areas, namely the insula, the rolandic operculum (base of the pre- and post-central gyri), the frontal operculum and the temporal operculum, confirming a wide overlap of taste and lingual somatosensory representations. However, the relative activation across areas and the analysis of co-activated areas across all runs for each set of stimuli allowed discrimination of taste and somatosensory modalities. Factor analysis of correspondences indicated different patterns of activation across the sub-insular and opercular regions, depending on the gustatory or somato-gustatory nature of the stimuli. For gustatory stimuli different activation patterns for the superior and inferior parts of the insula suggested a difference in function between these two insular sub-regions. Furthermore, the left inferior insula was co-activated with the left angular gyrus, a structure involved in semantic processing. In contrast, only somato-gustatory stimuli specifically produced a simultaneous and symmetrical activation of both the left and right rolandic opercula, which include a part of the sensory homunculus dedicated to the tactile representation of oral structures

    Human taste cortical areas studied with functional magnetic resonance imaging: evidence of functional lateralization related to handedness.

    Full text link
    International audienceWhole-brain functional magnetic resonance imaging was used to detect local hemodynamic changes reflecting cortical activation in five left handed and five right handed human subjects during bilateral stimulation of the tongue with various tastes. Activation was found bilaterally in the insula and the perisylvian region. These regions correspond to the primary taste cortical areas identified with electrophysiological recordings in monkeys and suggested from former clinical observations in human subjects. Moreover, a unilateral projection was described for the first time in the inferior part of the insula of the dominant hemisphere, according to the subject's handedness
    corecore