66 research outputs found
Association of genetic polymorphisms in the interleukin-10 promoter with risk of prostate cancer in Chinese
<p>Abstract</p> <p>Background</p> <p>Recent studies identified an increased risk of prostate cancer (PCa) in Caucasian men harboring polymorphisms of genes involved in innate immunity and inflammation. This study was designed to assess whether single nucleotide polymorphisms in the IL-10 promoter play a role in predisposing individuals to PCa in a Chinese population.</p> <p>Methods</p> <p>We genotyped three SNPs of the <it>IL-10 </it>promoter (-1082A/G, -819T/C and -592A/C) using polymerase chain reaction-restriction fragment length polymorphism analysis in 262 subjects with PCa and 270 age-matched healthy controls. Odds ratio and 95% confidence interval were determined by logistic regression for the associations between IL-10 genotypes and haplotypes with the risk of PCa and advanced PCa grade.</p> <p>Results</p> <p>No significant differences in allele frequency or genotype distribution were observed for any of the <it>IL-10 </it>SNPs between PCa patients and control subjects. Significantly higher frequencies of -1082G, -819C and -592C allele and GCC haplotype were observed, however, in early stage patients in comparison to advanced PCa patients (for -1082 G, 13.9% vs 6.1%, OR = 2.48, <it>P </it>= 0.005; for -819 C 40.3% vs 30.8%, OR = 1.51, <it>P </it>= 0.043; for -512C, 40.3% vs 30.8%, OR = 1.51, <it>P </it>= 0.043; and for haplotype GCC 11.1%vs 5.1%, OR = 2.66, P = 0.008, respectively).</p> <p>Conclusions</p> <p>Our results identify that <it>IL-10 </it>promoter polymorphisms might not be a risk factor for PCa in Chinese cohorts, but rather incidence of polymorphisms associates with PCa grade, suggesting that IL-10 expression may impact PCa progression.</p
Parity-related molecular signatures and breast cancer subtypes by estrogen receptor status
INTRODUCTION: Relationships of parity with breast cancer risk are complex. Parity is associated with decreased risk of postmenopausal hormone receptor–positive breast tumors, but may increase risk for basal-like breast cancers and early-onset tumors. Characterizing parity-related gene expression patterns in normal breast and breast tumor tissues may improve understanding of the biological mechanisms underlying this complex pattern of risk. METHODS: We developed a parity signature by analyzing microRNA microarray data from 130 reduction mammoplasty (RM) patients (54 nulliparous and 76 parous). This parity signature, together with published parity signatures, was evaluated in gene expression data from 150 paired tumors and adjacent benign breast tissues from the Polish Breast Cancer Study, both overall and by tumor estrogen receptor (ER) status. RESULTS: We identified 251 genes significantly upregulated by parity status in RM patients (parous versus nulliparous; false discovery rate = 0.008), including genes in immune, inflammation and wound response pathways. This parity signature was significantly enriched in normal and tumor tissues of parous breast cancer patients, specifically in ER-positive tumors. CONCLUSIONS: Our data corroborate epidemiologic data, suggesting that the etiology and pathogenesis of breast cancers vary by ER status, which may have implications for developing prevention strategies for these tumors
Pubertal high fat diet: effects on mammary cancer development
INTRODUCTION: Epidemiological studies linking dietary fat intake and obesity to breast cancer risk have produced inconsistent results. This may be due to the difficulty of dissociating fat intake from obesity, and/or the lack of defined periods of exposure in these studies. The pubertal mammary gland is highly sensitive to cancer-causing agents. We assessed how high fat diet (HFD) affects inflammation, proliferative, and developmental events in the pubertal gland, since dysregulation of these can promote mammary tumorigenesis. To test the effect of HFD initiated during puberty on tumorigenesis, we utilized BALB/c mice, for which HFD neither induces obesity nor metabolic syndrome, allowing dissociation of HFD effects from other conditions associated with HFD. METHODS: Pubertal BALB/c mice were fed a low fat diet (12% kcal fat) or a HFD (60% kcal fat), and subjected to carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-induced tumorigenesis. RESULTS: HFD elevated mammary gland expression of inflammatory and growth factor genes at 3 and 4 weeks of diet. Receptor activator of nuclear factor kappa-B ligand (RANKL), robustly induced at 4 weeks, has direct mitogenic activity in mammary epithelial cells and, as a potent inducer of NF-κB activity, may induce inflammatory genes. Three weeks of HFD induced a transient influx of eosinophils into the mammary gland, consistent with elevated inflammatory factors. At 10 weeks, prior to the appearance of palpable tumors, there were increased numbers of abnormal mammary epithelial lesions, enhanced cellular proliferation, increased growth factors, chemokines associated with immune-suppressive regulatory T cells, increased vascularization, and elevated M2 macrophages. HFD dramatically reduced tumor latency. Early developing tumors were more proliferative and were associated with increased levels of tumor-related growth factors, including increased plasma levels of HGF in tumor-bearing animals. Early HFD tumors also had increased vascularization, and more intra-tumor and stromal M2 macrophages. CONCLUSIONS: Taken together in this non-obesogenic context, HFD promotion of inflammatory processes, as well as local and systemically increased growth factor expression, are likely responsible for the enhanced tumorigenesis. It is noteworthy that although DMBA mutagenesis is virtually random in its targeting of genes in tumorigenesis, the short latency tumors arising in animals on HFD showed a unique gene expression profile, highlighting the potent overarching influence of HFD
Circulating insulin-like growth factor-I, insulin-like growth factor binding protein-3 and terminal duct lobular unit involution of the breast:a cross-sectional study of women with benign breast disease
BACKGROUND: Terminal duct lobular units (TDLUs) are the primary structures from which breast cancers and their precursors arise. Decreased age-related TDLU involution and elevated mammographic density are both correlated and independently associated with increased breast cancer risk, suggesting that these characteristics of breast parenchyma might be linked to a common factor. Given data suggesting that increased circulating levels of insulin-like growth factors (IGFs) factors are related to reduced TDLU involution and increased mammographic density, we assessed these relationships using validated quantitative methods in a cross-sectional study of women with benign breast disease. METHODS: Serum IGF-I, IGFBP-3 and IGF-I:IGFBP-3 molar ratios were measured in 228 women, ages 40-64, who underwent diagnostic breast biopsies yielding benign diagnoses at University of Vermont affiliated centers. Biopsies were assessed for three separate measures inversely related to TDLU involution: numbers of TDLUs per unit of tissue area (“TDLU count”), median TDLU diameter (“TDLU span”), and number of acini per TDLU (“acini count”). Regression models, stratified by menopausal status and adjusted for potential confounders, were used to assess the associations of TDLU count, median TDLU span and median acini count per TDLU with tertiles of circulating IGFs. Given that mammographic density is associated with both IGF levels and breast cancer risk, we also stratified these associations by mammographic density. RESULTS: Higher IGF-I levels among postmenopausal women and an elevated IGF-I:IGFBP-3 ratio among all women were associated with higher TDLU counts, a marker of decreased lobular involution (P-trend = 0.009 and <0.0001, respectively); these associations were strongest among women with elevated mammographic density (P-interaction <0.01). Circulating IGF levels were not significantly associated with TDLU span or acini count per TDLU. CONCLUSIONS: These results suggest that elevated IGF levels may define a sub-group of women with high mammographic density and limited TDLU involution, two markers that have been related to increased breast cancer risk. If confirmed in prospective studies with cancer endpoints, these data may suggest that evaluation of IGF signaling and its downstream effects may have value for risk prediction and suggest strategies for breast cancer chemoprevention through inhibition of the IGF system. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-016-0678-4) contains supplementary material, which is available to authorized users
- …