8 research outputs found
The CARESSES Randomised Controlled Trial: Exploring the Health-Related Impact of Culturally Competent Artificial Intelligence Embedded Into Socially Assistive Robots and Tested in Older Adult Care Homes
This trial represents the final stage of the CARESSES project which aimed to develop and evaluate a culturally competent artificial intelligent system embedded into social robots to support older adult wellbeing. A parallel group, single-blind randomised controlled trial was conducted across older adult care homes in England and Japan. Participants randomly allocated to the Experimental Group or Control Group 1 received a Pepper robot for up 18 h across 2 weeks. Two versions of the CARESSES artificial intelligence were tested: a fully culturally competent system (Experimental Group) and a more limited version (Control Group 1). Control Group 2 (Care As Usual) participants did not receive a robot. Quantitative outcomes of interest reported in the current paper were health-related quality of life (SF-36), loneliness (ULS-8), and perceptions of robotic cultural competence (CCATool-Robotics). Thirty-three residents completed all procedures. The difference in SF-36 Emotional Wellbeing scores between Experimental Group and Care As Usual participants over time was significant (F[1] = 6.614, sig = .019, ηp^2 = .258), as was the comparison between Any Robot used and Care As Usual (F[1] = 5.128, sig = .031, ηp^2 = .146). There were no significant changes in SF-36 physical health subscales. ULS-8 loneliness scores slightly improved among Experimental and Control Group 1 participants compared to Care As Usual participants, but this was not significant. This study brings new evidence which cautiously supports the value of culturally competent socially assistive robots in improving the psychological wellbeing of older adults residing in care settings
Open letter to the Society for Neuroscience
This is an open letter concerning the recent launch of the new open access journal, eNeuro.
We welcome the diversification of journal choices for authors looking for open access venues, as well as the willingness of eNeuro to accept negative results and study replications, its membership in the Neuroscience Peer Review Consortium, the publication of peer review syntheses alongside articles, and the requirement that molecular data be publicly available.
As strong supporters of open access, we welcome the commitment of the Society to making the works it publishes freely and openly available. However, we are concerned with several aspects of the specific approach, and outline herein a number of suggestions that would allow eNeuro to provide the full benefits of open access to the communities the journal aims to serve..
Recommended from our members
DNA methylation networks underlying mammalian traits.
Using DNA methylation profiles (n = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in HOXL subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species
Open Letter to The American Association for the Advancement of Science
This is an open letter concerning the recent launch of the new open access journal, Science Advances. In addition to the welcome diversification in journal choices for authors looking for open access venues, there are many positive aspects of Science Advances: its broad STEM scope, its interest in cross-disciplinary research, and the offering of fee waivers. While we welcome the commitment of the Association to open access, we are also deeply concerned with the specific approach. Herein, we outline a number of suggestions that are in line with both the current direction that scholarly publishing is taking and the needs expressed by the open access community, which this journal aims to serve
DNA methylation networks underlying mammalian traits
Using DNA methylation profiles ( n = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in HOXL subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species
DNA methylation networks underlying mammalian traits
Using DNA methylation profiles ( = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species