126 research outputs found

    Relativistic models of the neutron-star matter equation of state

    Full text link
    Motivated by a recent astrophysical measurement of the pressure of cold matter above nuclear-matter saturation density, we compute the equation of state of neutron star matter using accurately calibrated relativistic models. The uniform stellar core is assumed to consist of nucleons and leptons in beta equilibrium; no exotic degrees of freedom are included. We found the predictions of these models to be in fairly good agreement with the measured equation of state. Yet the Mass-vs-Radius relations predicted by these same models display radii that are consistently larger than the observations.Comment: Submitted to Physical Review C (5 pages with 2 figures and 2 tables

    Small radii of neutron stars as an indication of novel in-medium effects

    Full text link
    At present, neutron star radii from both observations and model predictions remain very uncertain. Whereas different models can predict a wide range of neutron star radii, it is not possible for most models to predict radii that are smaller than about 10 km, thus if such small radii are established in the future they will be very difficult to reconcile with model estimates. By invoking a new term in the equation of state that enhances the energy density, but leaves the pressure unchanged we simulate the current uncertainty in the neutron star radii. This new term can be possibly due to the exchange of the weakly interacting light U-boson with appropriate in-medium parameters, which does not compromise the success of the conventional nuclear models. The validity of this new scheme will be tested eventually by more precise measurements of neutron star radii.Comment: EPJA (2015) in pres

    Probing the high-density behavior of symmetry energy with gravitational waves

    Full text link
    Gravitational wave (GW) astronomy opens up an entirely new window on the Universe to probe the equations of state (EOS) of neutron-rich matter. With the advent of next generation GW detectors, measuring the gravitational radiation from coalescing binary neutron star systems, mountains on rotating neutron stars, and stellar oscillation modes may become possible in the near future. Using a set of model EOSs satisfying the latest constraints from terrestrial nuclear experiments, state of the art nuclear many-body calculations of the pure neutron matter EOS, and astrophysical observations consistently, we study various GW signatures of the high-density behavior of the nuclear symmetry energy, which is considered among the most uncertain properties of dense neutron-rich nucleonic matter. In particular, we find the tidal polarizability of neutron stars, potentially measurable in binary systems just prior to merger, is more sensitive to the high density component of the nuclear symmetry energy than the symmetry energy at nuclear saturation density. We also find that the upper limit on the GW strain amplitude from elliptically deformed stars is very sensitive to the density dependence of the symmetry energy. This suggests that future developments in modeling of the neutron star crust, and direct gravitational wave signals from accreting binaries will provide a wealth of information on the EOS of neutron-rich matter. We also review the sensitivity of the rr-mode instability window to the density dependence of the symmetry energy. Whereas models with larger values of the density slope of the symmetry energy at saturation seem to be disfavored by the current observational data, within a simple rr-mode model, we point out that a subsequent softer behavior of the symmetry energy at high densities (hinted at by recent observational interpretations) could rule them in.Comment: 14 pages, 11 figures, 3 tables; submitted to EPJA Special Volume on Nuclear Symmetry Energ
    • …
    corecore