4 research outputs found

    TdERF1, an ethylene response factor associated with dehydration responses in durum wheat (Triticum turgidum L. subsp. durum)

    Get PDF
    Water deficit and increasing salinization reduce productivity of wheat, the leading crop for human diet. While the complete genome sequence of this crop has not been deciphered, a BAC library screening allowed the isolation of TdERF1, the first ethylene response factor gene from durum wheat. This gene is putatively involved in mediating salt stress tolerance and its characterization provides clues towards understanding the mechanisms underlyning the adaptation/tolerance of durum wheat to suboptimal growth conditions. TdERF1 expression is differentially induced by high salt treatment in two durum wheat varieties, the salt-tolerant Grecale (GR) and the salt-sensitive Om Rabiaa (OR). To further extend these findings, we show here that the expression of this ERF is correlated with physiological parameters, such as the accumulation of osmo-regulators and membrane integrity, that discriminate between the two contrasted wheat genotypes. The data confirm that GR and OR are two contrasted wheat genotypes with regard to salt-stress and show that TdERF1 is also induced by water stress with an expression pattern clearly discriminating between the twogenotypes. These findings suggest that TdERF1 might be involved in responses to salt and water stress providing a potential genetic marker discriminating between tolerant and sensitive wheat varieties

    Comparative Analysis of WRKY Genes Potentially Involved in Salt Stress Responses in Triticum turgidum L. ssp. durum

    Get PDF
    WRKY transcription factors are involved in multiple aspects of plant growth, development and responses to biotic stresses. Although they have been found to play roles in regulating plant responses to environmental stresses, these roles still need to be explored, especially those pertaining to crops. Durum wheat is the second most widely produced cereal in the world. Complex, large and unsequenced genomes, in addition to a lack of genomic resources, hinder the molecular characterization of tolerance mechanisms. This paper describes the isolation and characterization of five TdWRKY genes from durum wheat(TriticumturgidumL.ssp.durum).APCR-based screening of aT.turgidum BAC genomic library using primers within the conserved region of WRKY genes resulted in the isolation of five BAC clones. Following sequencing fully the five BACs, fine annotation through Triannot pipeline revealed 74.6% of the entire sequences as transposable elements and a 3.2% gene content with genes organized as islands with in oceans of TEs. Each BAC clone harbored a TdWRKY gene .The study showed a very extensive conservation of genomic structure between TdWRKYs and their orthologs from Brachypodium, barley, and T. aestivum. The structural features of TdWRKY proteins suggested that they are novel members of the WRKY family in durum wheat. TdWRKY1/2/4 , TdWRKY3, and TdWRKY5 belong to the group Ia, IIa, andIIc, respectively. Enrichmentofcis- regulatory elements related to stress responses in the promoters of some TdWRKY genes indicated their potential roles inmediating plant responses to a wide variety of environmental stresses. TdWRKY genes displayed different expression patterns in response to salt stress that distinguishes two durum wheat genotypes with contrasting salt stress tolerance phenotypes. TdWRKY genes tended to react earlier with a down-regulation in sensitive genotype leaves and with an up-regulation intolerant genotype leaves. The TdWRKY transcripts levels in roots increased intolerant genotype compared to sensitive genotype. The present results indicate that these genes might play some functional role in the salt tolerance in durum wheat

    Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses

    Get PDF
    As food crop, wheat is of prime importance for human society. Nevertheless, our understanding of the genetic and molecular mechanisms controlling wheat productivity conditions has been, so far, hampered by the lack of sufficient genomic resources. The present work describes the isolation and characterization of TdERF1, an ERF gene from durum wheat (Triticum turgidum L. subsp. durum). The structural features of TdERF1 supported the hypothesis that it is a novel member of the ERF family in durum wheat and, considering its close similarity to TaERF1 of Triticum aestivum, it probably plays a similar role in mediating responses to environmental stresses. TdERF1 displayed an expression pattern that discriminated between two durum wheat genotypes contrasted with regard to salt-stress tolerance. The high number of cis-regulatory elements related to stress responses present in the TdERF1 promoter and the ability of TdERF1 to regulate the transcription of ethylene and drought-responsive promoters clearly indicated its potential role in mediating plant responses to a wide variety of environmental constrains. TdERF1 was also regulated by abscisic acid, ethylene, auxin, and salicylic acid, suggesting that it may be at the crossroads of multiple hormone signalling pathways. Four TdERF1 allelic variants have been identified in durum wheat genome, all shown to be transcriptionally active. Interestingly, the expression of one allelic form is specific to the tolerant genotype, further supporting the hypothesis that this gene is probably associated with the susceptibility/tolerance mechanism to salt stress. In this regard, the TdERF1 gene may provide a discriminating marker between tolerant and sensitive wheat varieties
    corecore