5 research outputs found

    PVA/Inulin-Based Sustainable Films Reinforced with Pickering Emulsion of Niaouli Essential Oil for Potential Wound Healing Applications

    No full text
    In this study, sustainable water-based films were produced via the solvent-casting method. Petroleum-free-based polyvinyl alcohol (PVA) and carbohydrate-based inulin (INL) were used as matrices. Vegetable-waste pumpkin powder was used in the study because of its sustainability and antibacterial properties. Pickering emulsions were prepared using β-cyclodextrin. The influence of the different ratios of the β-cyclodextrin/niaouli essential oil (β-CD/NEO) inclusion complex (such as 1:1, 1:3, and 1:5) on the morphological (SEM), thermal (TGA), physical (FT-IR), wettability (contact angle), and mechanical (tensile test) characteristics of PVA/inulin films were investigated. Moreover, the antibacterial activities against the Gram (−) (Escherichia coli and Pseudomonas aeruginosa) and Gram (+) (Staphylococcus aureus) bacteria of the obtained films were studied. From the morphological analysis, good emulsion stability and porosity were obtained in the Pickering films with the highest oil content, while instability was observed in the Pickering films with the lowest concentration of oil content. Thermal and spectroscopic analysis indicated there was no significant difference between the Pickering emulsion films and neat films. With the addition of Pickering emulsions, the tensile stress values decreased from 7.3 ± 1.9 MPa to 3.3 ± 0.2. According to the antibacterial efficiency results, films containing pumpkin powder and Pickering emulsion films containing both pumpkin powder and a ratio of 1:1 (β-CD/NEO) did not have an antibacterial effect, while Pickering emulsion films with a ratio of (β-CD/NEO) 1:3 and 1:5 showed an antibacterial effect against Escherichia coli, with a zone diameter of 12 cm and 17 cm, respectively. Among the samples, the films with ratio of (β-CD/NEO) 1:5 had the highest antioxidant capacity, as assessed by DPPH radical scavenging at 12 h intervals. Further, none of the samples showed any cytotoxic effects the according to LDH and WST-1 cytotoxicity analysis for the NIH3T3 cell line. Ultimately, it is expected that these films are completely bio-based and may be potential candidates for use in wound healing applications

    Przygotowanie i charakterystyka elektroprzędzionych nanowłókien z witaminą stosowanych w plastrach transdermalnych

    No full text
    In this study, bioactive fibres were produced using polyvinyl alcohol (PVA), gelatin, polyvinyl pyrrolidone (PVP) as a polymer matrix, and different amounts of folic acid (FA) as a vitamin using the electrospinning technique. Loading of the folic acid in the polymers was determined by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR); morphologies and average diameters were analysed by Scanning Electron Microscopy (SEM), and Thermal Gravimetric Analysis (TGA) was applied to determine thermal behaviours. The FTIR spectra and TGA thermograms showed the successful incorporation of folic acid into the fibres. SEM images showed that various smooth and heterogenous electrospun fibres were produced with average diameters ranging from 125 to 980 nm. An in-vitro study was carried out using dissolved FA in an artificial sweat solution (acidic media, pH 5.44), and UV-Vis analysis of electrospun fibres was made. The in vitro release study showed that the FA loaded nanofibres had initial vitamin burst release behaviour. The maximum vitamin release percentage of the PVA/FA, gelatin/FA, and PVP/FA fibres was obtained as 86.88%, 80.2%, and 76.66%, respectively. From these results, we can state that FA-loaded fibres can be potential candidates for transdermal patches and topical applications.Wyprodukowano elektroprzędzione bioaktywne włókna, do których wytworzenia użyto polialkoholu winylowego (PVA), żelatyny, poliwinylopirolidonu (PVP) jako matrycy polimerowej oraz różnych ilości kwasu foliowego (FA) jako witaminy. Obecność kwasu foliowegow w polimerach określono metodą spektroskopii w podczerwieni z osłabionym całkowitym odbiciem i transformacją Fouriera (ATR-FTIR); morfologię i średnie średnice analizowano za pomocą skaningowej mikroskopii elektronowej (SEM), a do określenia zachowań termicznych zastosowano analizę termograwimetryczną (TGA). Widma FTIR i termogramy TGA wykazały udane włączenie kwasu foliowego do włókien. Obrazy SEM pokazały, że wytworzono gładkie i heterogeniczne włókna elektroprzędzone o średnich średnicach w zakresie od 125 do 980 nm. Przeprowadzono badanie in vitro z użyciem rozpuszczonego FA w roztworze sztucznego potu (środowisko kwaśne, pH 5,44) oraz wykonano analizę UV-Vis włókien elektroprzędzonych. Badanie uwalniania in vitro wykazało, że nanowłókna obciążone FA wykazywały początkowo gwałtowne uwalnianie witamin. Maksymalny procent uwalniania witamin z włókien PVA/FA, żelatyna/FA i PVP/FA wyniósł odpowiednio 86,88%, 80,2% i 76,66%. Na podstawie tych wyników stwierdzono, że włókna obciążone FA mogą być potencjalnymi kandydatami do stosowania plastrów przezskórnych i zastosowań miejscowych

    Development of PVA–Psyllium Husk Meshes via Emulsion Electrospinning: Preparation, Characterization, and Antibacterial Activity

    No full text
    In this study, polyvinyl alcohol (PVA) and psyllium husk (PSH)/D-limonene electrospun meshes were produced by emulsion electrospinning for use as substrates to prevent the growth of bacteria. D-limonene and modified microcrystalline cellulose (mMCC) were preferred as antibacterial agents. SEM micrographs showed that PVA–PSH electrospun mesh with a 4% amount of D-limonene has the best average fiber distribution with 298.38 ± 62.8 nm. Moreover, the fiber morphology disrupts with the addition of 6% D-limonene. FT-IR spectroscopy was used to analyze the chemical structure between matrix–antibacterial agents (mMCC and D-limonene). Although there were some partial physical interactions in the FT-IR spectrum, no chemical reactions were seen between the matrixes and the antibacterial agents. The thermal properties of the meshes were determined using thermal gravimetric analysis (TGA). The thermal stability of the samples increased with the addition of mMCC. Further, the PVA–PSH–mMCC mesh had the highest value of contact angle (81° ± 4.05). The antibacterial activity of functional meshes against Gram (−) (Escherichia coli, Pseudomonas aeruginosa) and Gram (+) bacteria (Staphylococcus aureus) was specified based on a zone inhibition test. PPMD6 meshes had the highest antibacterial results with 21 mm, 16 mm, and 15 mm against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, respectively. While increasing the amount of D-limonene enhanced the antibacterial activity, it significantly decreased the amount of release in cases of excess D-limonene amount. Due to good fiber morphology, the highest D-limonene release value (83.1%) was observed in PPMD4 functional meshes. The developed functional meshes can be utilized as wound dressing material based on our data

    PVA/Inulin-Based Sustainable Films Reinforced with Pickering Emulsion of Niaouli Essential Oil for Potential Wound Healing Applications

    No full text
    In this study, sustainable water-based films were produced via the solvent-casting method. Petroleum-free-based polyvinyl alcohol (PVA) and carbohydrate-based inulin (INL) were used as matrices. Vegetable-waste pumpkin powder was used in the study because of its sustainability and antibacterial properties. Pickering emulsions were prepared using β-cyclodextrin. The influence of the different ratios of the β-cyclodextrin/niaouli essential oil (β-CD/NEO) inclusion complex (such as 1:1, 1:3, and 1:5) on the morphological (SEM), thermal (TGA), physical (FT-IR), wettability (contact angle), and mechanical (tensile test) characteristics of PVA/inulin films were investigated. Moreover, the antibacterial activities against the Gram (−) (Escherichia coli and Pseudomonas aeruginosa) and Gram (+) (Staphylococcus aureus) bacteria of the obtained films were studied. From the morphological analysis, good emulsion stability and porosity were obtained in the Pickering films with the highest oil content, while instability was observed in the Pickering films with the lowest concentration of oil content. Thermal and spectroscopic analysis indicated there was no significant difference between the Pickering emulsion films and neat films. With the addition of Pickering emulsions, the tensile stress values decreased from 7.3 ± 1.9 MPa to 3.3 ± 0.2. According to the antibacterial efficiency results, films containing pumpkin powder and Pickering emulsion films containing both pumpkin powder and a ratio of 1:1 (β-CD/NEO) did not have an antibacterial effect, while Pickering emulsion films with a ratio of (β-CD/NEO) 1:3 and 1:5 showed an antibacterial effect against Escherichia coli, with a zone diameter of 12 cm and 17 cm, respectively. Among the samples, the films with ratio of (β-CD/NEO) 1:5 had the highest antioxidant capacity, as assessed by DPPH radical scavenging at 12 h intervals. Further, none of the samples showed any cytotoxic effects the according to LDH and WST-1 cytotoxicity analysis for the NIH3T3 cell line. Ultimately, it is expected that these films are completely bio-based and may be potential candidates for use in wound healing applications
    corecore