18 research outputs found
Wound Restorative Power of <i>Halimeda macroloba</i>/ Mesenchymal Stem Cells in Immunocompromised Rats via Downregulating Inflammatory/Immune Cross Talk
Impaired skin wound healing is still a major challenge, especially with immunocompromised patients who express delayed healing and are susceptible to infections. Injection of rat-derived bone marrow mesenchymal stem cells (BMMSCs) via the tail vein accelerates cutaneous wound healing via their paracrine activity. The present work aimed to investigate the combined wound-healing potential of BMMSCs and Halimeda macroloba algae extract in immunocompromised rats. High-resolution liquid chromatography-mass spectrometry (HR-LC-MS) investigation of the extract revealed the presence of variant phytochemicals, mostly phenolics, and terpenoids, known for their angiogenic, collagen-stimulating, anti-inflammatory, and antioxidant properties. The BMMSCs were isolated and characterized for CD markers, where they showed a positive expression of CD90 by 98.21% and CD105 by 97.1%. Twelve days after inducing immunocompromise (40 mg/kg hydrocortisone daily), a circular excision was created in the dorsal skin of rats and the treatments were continued for 16 days. The studied groups were sampled on days 4, 8, 12, and 16 after wounding. The gross/histopathological results revealed that the wound closure (99%), thickness, density of new epidermis and dermis, and skin elasticity in the healed wounds were considerably higher in the BMMSCs/Halimeda group than the control group (p Halimeda extract combination had perfectly attenuated oxidative stress, proinflammatory cytokines, and NF-KB activation at day 16 of wounding. The combination holds promise for regenerative medicine, representing a revolutionary step in the wound healing of immunocompromised patients, with still a need for safety assessments and further clinical trials
The Potential of Corchorus olitorius Seeds Buccal Films for Treatment of Recurrent Minor Aphthous Ulcerations in Human Volunteers
Aphthous ulcers are very common disorders among different age groups and are very noxious and painful. The incidence of aphthous ulcer recurrence is very high and it may even last for a maximum of 6 days and usually, patients cannot stand its pain. This study aims to prepare a buccoadhesive fast dissolving film containing Corchorus olitorius seed extract to treat recurrent minor aphthous ulceration (RMAU) in addition to clinical experiments on human volunteers. An excision wound model was used to assess the in vivo wound healing potential of Corchorus olitorius L. seed extract, with a focus on wound healing molecular targets such as TGF-, TNF-, and IL-1. In addition, metabolomic profiling using HR-LCMS for the crude extract of Corchorus olitorius seeds was explored. Moreover, molecular docking experiments were performed to elucidate the binding confirmation of the isolated compounds with three molecular targets (TNF-α, IL-1β, and GSK3). Additionally, the in vitro antioxidant potential of C. olitorius seed extract using both H2O2 and superoxide radical scavenging activity was examined. Clinical experiments on human volunteers revealed the efficiency of the prepared C. olitorius seeds buccal fast dissolving film (CoBFDF) in relieving pain and wound healing of RMAU. Moreover, the wound healing results revealed that C. olitorius seed extract enhanced wound closure rates (p ≤ 0.001), elevated TGF-β levels and significantly downregulated TNF-α and IL-1β in comparison to the Mebo-treated group. The phenotypical results were supported by biochemical and histopathological findings, while metabolomic profiling using HR-LCMS for the crude extract of Corchorus olitorius seeds yielded a total of 21 compounds belonging to diverse chemical classes. Finally, this study highlights the potential of C. olitorius seed extract in wound repair uncovering the most probable mechanisms of action using in silico analysis
Target relevant to wound healing process.
Wound healing, one of the most intricate and dynamic processes of the body, maintains skin integrity following trauma. One of the main issues that still exists is impaired wound healing, particularly for immunosuppressed patients. Recently, natural products from marine environments have been employed in wound-repairing activities. This work investigates the mesenchymal stem cells in the combined capacity of the bone marrow (BMMSC) for wound healing and Cystoseira sp. Algae extract in immunosuppressed rats. High-resolution liquid chromatography / MS investigation of Cystoseira extract revealed the prevalence of fatty acids that have wound-soothing potential. From constructed PPI network for wound healing and further analysis through molecular docking and molecular dynamics (MD) simulation experiments suggested that cystalgerone metabolite may be responsible for the wound healing-promoting effect of Cystoseira extract. According to the CD marker characterization of the BMMSC, 98.21% of them expressed CD90, and 97.1% expressed CD105. Sixteen d after immunity suppression (by 40 mg/kg hydrocortisone daily), an incision was made in the dorsal skin of the rat. The treatments were applied for 16 d and samples were taken from the tested groups on the 8th, 14th, and 16th days. The BMMSCs / Cystoseira group showed significantly improved wound closure, thickness, density of new layers, and skin elasticity than the control group (p Cystoseira combination significantly reduced the oxidative indicators, pro-inflammatory cytokines, and immune markers, according to the RT-PCR gene expression study. In order to delve deeper into the complex interconnections among wound healing-related biological targets and pinpoint key factors in this complex process, we engaged in network pharmacology and computational research. Subsequently, we conducted a comprehensive computational analysis, including reverse docking, free energy (ΔG) computation, and molecular dynamics simulations, on the molecular structures of the annotated compounds. The purpose of this investigation was to identify potential new targets for these chemicals as well as any potential interactions they may have with different signaling pathways related to the wound healing process. Our research indicates that the primary compounds of Cystoseira holds potential wound healing therapeutic activity. Although more safety testing and clinical studies are required, the combination has great potential for regenerative medicine and could be a revolutionary advance in the healing of the wounds of immunosuppressed patients.</div
Predicted cross talk between inflammatory and immune cells in wounded/immunosuppressed rats, dashed lines express delayed activation of pro-inflammatory cytokines and immunity markers.
Predicted cross talk between inflammatory and immune cells in wounded/immunosuppressed rats, dashed lines express delayed activation of pro-inflammatory cytokines and immunity markers.</p
Fig 4 -
(A) Wound closure rates over time post-injury in all experimental groups, (B) the wound aspect ratio was calculated to describe observed changes in the shape and direction of wound contraction between the groups (length: width).</p
Dereplicated compounds from <i>Cystoseira</i> algae.
Wound healing, one of the most intricate and dynamic processes of the body, maintains skin integrity following trauma. One of the main issues that still exists is impaired wound healing, particularly for immunosuppressed patients. Recently, natural products from marine environments have been employed in wound-repairing activities. This work investigates the mesenchymal stem cells in the combined capacity of the bone marrow (BMMSC) for wound healing and Cystoseira sp. Algae extract in immunosuppressed rats. High-resolution liquid chromatography / MS investigation of Cystoseira extract revealed the prevalence of fatty acids that have wound-soothing potential. From constructed PPI network for wound healing and further analysis through molecular docking and molecular dynamics (MD) simulation experiments suggested that cystalgerone metabolite may be responsible for the wound healing-promoting effect of Cystoseira extract. According to the CD marker characterization of the BMMSC, 98.21% of them expressed CD90, and 97.1% expressed CD105. Sixteen d after immunity suppression (by 40 mg/kg hydrocortisone daily), an incision was made in the dorsal skin of the rat. The treatments were applied for 16 d and samples were taken from the tested groups on the 8th, 14th, and 16th days. The BMMSCs / Cystoseira group showed significantly improved wound closure, thickness, density of new layers, and skin elasticity than the control group (p Cystoseira combination significantly reduced the oxidative indicators, pro-inflammatory cytokines, and immune markers, according to the RT-PCR gene expression study. In order to delve deeper into the complex interconnections among wound healing-related biological targets and pinpoint key factors in this complex process, we engaged in network pharmacology and computational research. Subsequently, we conducted a comprehensive computational analysis, including reverse docking, free energy (ΔG) computation, and molecular dynamics simulations, on the molecular structures of the annotated compounds. The purpose of this investigation was to identify potential new targets for these chemicals as well as any potential interactions they may have with different signaling pathways related to the wound healing process. Our research indicates that the primary compounds of Cystoseira holds potential wound healing therapeutic activity. Although more safety testing and clinical studies are required, the combination has great potential for regenerative medicine and could be a revolutionary advance in the healing of the wounds of immunosuppressed patients.</div
Workflow of the study.
Wound healing, one of the most intricate and dynamic processes of the body, maintains skin integrity following trauma. One of the main issues that still exists is impaired wound healing, particularly for immunosuppressed patients. Recently, natural products from marine environments have been employed in wound-repairing activities. This work investigates the mesenchymal stem cells in the combined capacity of the bone marrow (BMMSC) for wound healing and Cystoseira sp. Algae extract in immunosuppressed rats. High-resolution liquid chromatography / MS investigation of Cystoseira extract revealed the prevalence of fatty acids that have wound-soothing potential. From constructed PPI network for wound healing and further analysis through molecular docking and molecular dynamics (MD) simulation experiments suggested that cystalgerone metabolite may be responsible for the wound healing-promoting effect of Cystoseira extract. According to the CD marker characterization of the BMMSC, 98.21% of them expressed CD90, and 97.1% expressed CD105. Sixteen d after immunity suppression (by 40 mg/kg hydrocortisone daily), an incision was made in the dorsal skin of the rat. The treatments were applied for 16 d and samples were taken from the tested groups on the 8th, 14th, and 16th days. The BMMSCs / Cystoseira group showed significantly improved wound closure, thickness, density of new layers, and skin elasticity than the control group (p Cystoseira combination significantly reduced the oxidative indicators, pro-inflammatory cytokines, and immune markers, according to the RT-PCR gene expression study. In order to delve deeper into the complex interconnections among wound healing-related biological targets and pinpoint key factors in this complex process, we engaged in network pharmacology and computational research. Subsequently, we conducted a comprehensive computational analysis, including reverse docking, free energy (ΔG) computation, and molecular dynamics simulations, on the molecular structures of the annotated compounds. The purpose of this investigation was to identify potential new targets for these chemicals as well as any potential interactions they may have with different signaling pathways related to the wound healing process. Our research indicates that the primary compounds of Cystoseira holds potential wound healing therapeutic activity. Although more safety testing and clinical studies are required, the combination has great potential for regenerative medicine and could be a revolutionary advance in the healing of the wounds of immunosuppressed patients.</div
Flow cytometric analysis showed that cultured immunophenotype of BMMSC displayed negative expression of CD34 and CD 45, also highlighting positive expression of CD90 (98.21%) and CD105 (97.1%) antibodies staining.
Flow cytometric analysis showed that cultured immunophenotype of BMMSC displayed negative expression of CD34 and CD 45, also highlighting positive expression of CD90 (98.21%) and CD105 (97.1%) antibodies staining.</p
Primers used for real-time PCR.
Wound healing, one of the most intricate and dynamic processes of the body, maintains skin integrity following trauma. One of the main issues that still exists is impaired wound healing, particularly for immunosuppressed patients. Recently, natural products from marine environments have been employed in wound-repairing activities. This work investigates the mesenchymal stem cells in the combined capacity of the bone marrow (BMMSC) for wound healing and Cystoseira sp. Algae extract in immunosuppressed rats. High-resolution liquid chromatography / MS investigation of Cystoseira extract revealed the prevalence of fatty acids that have wound-soothing potential. From constructed PPI network for wound healing and further analysis through molecular docking and molecular dynamics (MD) simulation experiments suggested that cystalgerone metabolite may be responsible for the wound healing-promoting effect of Cystoseira extract. According to the CD marker characterization of the BMMSC, 98.21% of them expressed CD90, and 97.1% expressed CD105. Sixteen d after immunity suppression (by 40 mg/kg hydrocortisone daily), an incision was made in the dorsal skin of the rat. The treatments were applied for 16 d and samples were taken from the tested groups on the 8th, 14th, and 16th days. The BMMSCs / Cystoseira group showed significantly improved wound closure, thickness, density of new layers, and skin elasticity than the control group (p Cystoseira combination significantly reduced the oxidative indicators, pro-inflammatory cytokines, and immune markers, according to the RT-PCR gene expression study. In order to delve deeper into the complex interconnections among wound healing-related biological targets and pinpoint key factors in this complex process, we engaged in network pharmacology and computational research. Subsequently, we conducted a comprehensive computational analysis, including reverse docking, free energy (ΔG) computation, and molecular dynamics simulations, on the molecular structures of the annotated compounds. The purpose of this investigation was to identify potential new targets for these chemicals as well as any potential interactions they may have with different signaling pathways related to the wound healing process. Our research indicates that the primary compounds of Cystoseira holds potential wound healing therapeutic activity. Although more safety testing and clinical studies are required, the combination has great potential for regenerative medicine and could be a revolutionary advance in the healing of the wounds of immunosuppressed patients.</div
Fig 8 -
(A) Human cancer PPI network. This network consists of 201 nodes and 202 edges with an average node degree of 2.01. The top-interacting nodes were colored red (7.9%, 38 proteins of all interacting nodes, namely, hub protein). (B) The top interacting nodes (4.4%, ten proteins of all interacting nodes, namely, hub protein). Cystalgerone was predicted to interact with one of the hub proteins (viz., MMP9).</p