3 research outputs found

    Cardioprotective Potential of Polyphenolic Rich Green Combination in Catecholamine Induced Myocardial Necrosis in Rabbits

    Get PDF
    The present study was designed to develop safer, effective, and viable cardioprotective herbal combination to control oxidative stress related cardiac ailments as new alternatives to synthetic drugs. The synergetic cardioprotective potential of herbal combination of four plants T. arjuna (T.A.), P. nigrum (P.N), C. grandiflorus (C), and C. oxyacantha (Cr) was assessed through curative and preventive mode of treatment. In preventive mode of treatment, the cardiac injury was induced with synthetic catecholamine (salbutamol) to pretreated rabbits with the proposed herbal combination for three weeks. In curative mode of treatment, cardiotoxicity/oxidative stress was induced in rabbits with salbutamol prior to treating them with plant mixture. Cardiac marker enzymes, lipids profile, and antioxidant enzymes as biomarker of cardiotoxicity were determined in experimental animals. Rabbits administrated with mere salbutamol showed a significant increase in cardiac marker enzymes and lipid profile and decrease in antioxidant enzymes as compared to normal control indicating cardiotoxicity and myocardial cell necrosis. However, pre-and postadministration of plant mixture appreciably restored the levels of all biomarkers. Histopathological examination confirmed that the said combination was safer cardioprotective product

    In vitro biological assessment of 1,3,4-oxadiazole sandwiched by azinane and acetamides supported by molecular docking and BSA binding studies

    Get PDF
    The 1,3,4-Oxadiazole is an aromatic heterocyclic moiety recognized in drug research for its low lipophilicity. The multiple functionalities, heterocyclic azinane, sulfonamide, 1,3,4-oxadiazole and acetamide, are combined collectively to enhance the bioactivity potential of synthesized molecules. All the compounds were acquired by following microwave assisted and conventional techniques in a comparative way. The synthesized derivatives were screened for their antibacterial and enzyme inhibition potential. Furthermore, BSA binding analysis was executed to infer about the interaction with serum albumin. The spectral data of IR, EI-MS, 1H-NMR and 13C-NMR were used to elucidate the final structures of compounds. The synthesized compounds had a modest antibacterial potential. Compound 8f bearing 2-methyl-4,5-dinitrophenyl group was the most active one against all the bacterial strains taken into account and α-glucosidase enzyme. Compound 8d bearing 4-nitrophenyl group was the best acetyl cholinesterase inhibitor and 8i bearing phenylethyl group was the best urease inhibitor

    Cardioprotective Potential of Polyphenolic Rich Green Combination in Catecholamine Induced Myocardial Necrosis in Rabbits

    No full text
    The present study was designed to develop safer, effective, and viable cardioprotective herbal combination to control oxidative stress related cardiac ailments as new alternatives to synthetic drugs. The synergetic cardioprotective potential of herbal combination of four plants T. arjuna (T.A.), P. nigrum (P.N), C. grandiflorus (C), and C. oxyacantha (Cr) was assessed through curative and preventive mode of treatment. In preventive mode of treatment, the cardiac injury was induced with synthetic catecholamine (salbutamol) to pretreated rabbits with the proposed herbal combination for three weeks. In curative mode of treatment, cardiotoxicity/oxidative stress was induced in rabbits with salbutamol prior to treating them with plant mixture. Cardiac marker enzymes, lipids profile, and antioxidant enzymes as biomarker of cardiotoxicity were determined in experimental animals. Rabbits administrated with mere salbutamol showed a significant increase in cardiac marker enzymes and lipid profile and decrease in antioxidant enzymes as compared to normal control indicating cardiotoxicity and myocardial cell necrosis. However, pre- and postadministration of plant mixture appreciably restored the levels of all biomarkers. Histopathological examination confirmed that the said combination was safer cardioprotective product
    corecore