7 research outputs found

    Accuracy of Master Casts Generated Using Conventional and Digital Impression Modalities: Part 1—The Half-Arch Dimension

    No full text
    Accurate impression-making is considered a vital step in the fabrication of fixed dental prostheses. There is a paucity of studies that compare the casts generated by various impression materials and techniques that are commonly used for the fabrication of provisional and definitive fixed prostheses. The aim of this study is to compare the accuracy of casts obtained using conventional impression and digital impression techniques. Thirty impressions were made for the typodont model (10 impressions each of polyvinyl siloxane, alginate, and alginate alternative materials). Ten digital models were printed from the same model using a TRIOS-3 3Shape intraoral scanner. Accuracy was assessed by measuring four dimensions (horizontal anteroposterior straight, horizontal anteroposterior curved, horizontal cross-arch, and vertical). A one-way ANOVA and Tukey’s test (α = 0.05) were used to analyze data. A statistically significant difference in the four dimensions of the stone casts and digital models was observed among the four groups (exception: between alginate alternative and 2-step putty–light body impression in the horizontal anteroposterior straight, horizontal anteroposterior curved, and horizontal cross-arch dimensions; between alginate and alginate alternative in the horizontal anteroposterior curved dimension; between alginate and 2-step putty–light body impression in the horizontal anteroposterior curved dimension; and between alginate alternative and digital in the vertical dimension). Polyvinyl siloxane had the highest accuracy compared to casts obtained from other impression materials and digital impressions

    Accuracy of Master Casts Generated Using Conventional and Digital Impression Modalities: Part 1—The Half-Arch Dimension

    No full text
    Accurate impression-making is considered a vital step in the fabrication of fixed dental prostheses. There is a paucity of studies that compare the casts generated by various impression materials and techniques that are commonly used for the fabrication of provisional and definitive fixed prostheses. The aim of this study is to compare the accuracy of casts obtained using conventional impression and digital impression techniques. Thirty impressions were made for the typodont model (10 impressions each of polyvinyl siloxane, alginate, and alginate alternative materials). Ten digital models were printed from the same model using a TRIOS-3 3Shape intraoral scanner. Accuracy was assessed by measuring four dimensions (horizontal anteroposterior straight, horizontal anteroposterior curved, horizontal cross-arch, and vertical). A one-way ANOVA and Tukey’s test (α = 0.05) were used to analyze data. A statistically significant difference in the four dimensions of the stone casts and digital models was observed among the four groups (exception: between alginate alternative and 2-step putty–light body impression in the horizontal anteroposterior straight, horizontal anteroposterior curved, and horizontal cross-arch dimensions; between alginate and alginate alternative in the horizontal anteroposterior curved dimension; between alginate and 2-step putty–light body impression in the horizontal anteroposterior curved dimension; and between alginate alternative and digital in the vertical dimension). Polyvinyl siloxane had the highest accuracy compared to casts obtained from other impression materials and digital impressions

    Linear Dimensional Change in Acrylic Denture Teeth Positions Factored by Different Processing Techniques and Occlusal Forms: An In Vitro Study

    No full text
    The current literature lacks substantial evidence for the effect of denture base processing techniques and posterior denture tooth forms on denture tooth shifts due to denture base resin polymerization. The aim of this study was to evaluate the combined effect of PMMA-based denture processing techniques (compression packing and injection molding) and posterior tooth forms (semi-anatomic and non-anatomic) on the linear dimensional shift of denture teeth following denture processing in both horizontal and vertical dimensions. Two different complete denture fabrication techniques were used to prepare forty ideal maxillary complete dentures using two different types of posterior tooth forms. The used fabrication techniques were conventional heat polymerized compression packing and injection molding. The posterior tooth forms used in the current study were non-anatomic tooth (0 degrees) and semi-anatomic tooth forms (approximately 20 degrees). Initial linear measurements (vertical and horizontal) were taken from pre-specified points for the central incisor and first molar. Specimens were randomly divided into four groups (n = 10), and denture processing was performed using the two techniques. Final linear measurements were recorded. The linear change in dimension for all six parameters was calculated by deducting the after values from the before values. Since the discrepancies were both positive and negative in magnitude, the absolute value of the difference was taken for further analysis. This value represents the dimensional change. T-tests were used to compare the mean dimensional changes. Furthermore, the mean dimensional changes for all the six parameters were compared using a two-way analysis of variance. The alpha error was set at 5%, and a p-value of less than 0.05 was considered statistically significant. The injection molding technique showed significantly fewer tooth movements in both the vertical and horizontal measurements as compared to the conventional compression packing technique. The non-anatomic tooth showed significantly fewer changes in tooth movement as compared to semi-anatomic teeth in both the compression and injection techniques. This study can guide the selection of a proper processing technique for a particular posterior tooth form, thus minimizing occlusal discrepancies and reducing occlusal corrections during laboratory and clinical remount procedures

    Linear Dimensional Change in Acrylic Denture Teeth Positions Factored by Different Processing Techniques and Occlusal Forms: An In Vitro Study

    No full text
    The current literature lacks substantial evidence for the effect of denture base processing techniques and posterior denture tooth forms on denture tooth shifts due to denture base resin polymerization. The aim of this study was to evaluate the combined effect of PMMA-based denture processing techniques (compression packing and injection molding) and posterior tooth forms (semi-anatomic and non-anatomic) on the linear dimensional shift of denture teeth following denture processing in both horizontal and vertical dimensions. Two different complete denture fabrication techniques were used to prepare forty ideal maxillary complete dentures using two different types of posterior tooth forms. The used fabrication techniques were conventional heat polymerized compression packing and injection molding. The posterior tooth forms used in the current study were non-anatomic tooth (0 degrees) and semi-anatomic tooth forms (approximately 20 degrees). Initial linear measurements (vertical and horizontal) were taken from pre-specified points for the central incisor and first molar. Specimens were randomly divided into four groups (n = 10), and denture processing was performed using the two techniques. Final linear measurements were recorded. The linear change in dimension for all six parameters was calculated by deducting the after values from the before values. Since the discrepancies were both positive and negative in magnitude, the absolute value of the difference was taken for further analysis. This value represents the dimensional change. T-tests were used to compare the mean dimensional changes. Furthermore, the mean dimensional changes for all the six parameters were compared using a two-way analysis of variance. The alpha error was set at 5%, and a p-value of less than 0.05 was considered statistically significant. The injection molding technique showed significantly fewer tooth movements in both the vertical and horizontal measurements as compared to the conventional compression packing technique. The non-anatomic tooth showed significantly fewer changes in tooth movement as compared to semi-anatomic teeth in both the compression and injection techniques. This study can guide the selection of a proper processing technique for a particular posterior tooth form, thus minimizing occlusal discrepancies and reducing occlusal corrections during laboratory and clinical remount procedures

    Efficacy of Three Commercially Available Desensitizers in Reducing Post-Operative Sensitivity Following Composite Restorations: A Randomized Controlled Clinical Trial

    No full text
    One of the most widely used esthetic restorations in dentistry is composite. The widespread application of composites can be related to advancements in biomaterials. However, due to various factors, composites are commonly associated with dental sensitivity. Hence, the present study evaluates and compares the effectiveness of three desensitizing agents in reducing post-treatment sensitivity for Class I composite restoration. Eighty subjects with Class I cavities were selected according to the inclusion criteria, and a randomized, double-blind, controlled clinical trial was carried out. Twenty patients were randomly assigned to four groups: Group C (Control group), Group GL (Gluma group), Group SF (Shield Force Plus group), and Group TC (Telio CS group). The desensitizers were applied after Class 1 cavity preparation and acid etching in all the groups, except the Control group, and thereafter, composite restoration was completed in a conventional manner. Questionnaires were provided to all the participants to record the post-operative pain/sensitivity level according to the visual analogue scale (VAS) on intake of cold drinks, intake of hot drinks, and intake of sugar for different periods of time. Significant variation was observed between the three desensitizers for all three stimuli. However, no significant variations were seen with the various age groups and between the maxillary and the mandibular teeth at the different time periods. Group GL performed better than Group SF and Group TC. It can be proposed that the application of the desensitizers reduced the post-restorative sensitivity in the composite restorations and improved acceptance

    Accuracy of Master Casts Generated Using Conventional and Digital Impression Modalities: Part 2—The Full Arch Dimension

    No full text
    The aim of this study was to evaluate the accuracy of master casts generated by conventional (putty and light body consistencies polyvinyl siloxane and alginate) and digital impression techniques on a typodont master model with full-arch-prepared abutment teeth. The null hypotheses tested were as follows: (1) no statistically significant differences in accuracy between casts made by the two impression modalities and the typodont master model at each of the four locations (horizontal straight, horizontal curved, horizontal cross arch, and vertical), and (2) no statistically significant differences in dimensions measured at each of the four locations between the casts generated using the conventional and digital impression techniques. For the conventional technique, 10 impressions each were made for the typodont model using polyvinyl siloxane and alginate impression materials, and the casts were poured. For the digital technique, the typodont model was scanned 10 times using a TRIOS-3 3Shape intraoral scanner, and the casts were printed. The measurements for the horizontal (anteroposterior and cross arch) and vertical dimensions were made using a stereomicroscope and the accuracy of fabricated casts was expressed as the percentage of deviation from the typodont master model’s values. A one-way ANOVA and Tukey’s test (p < 0.05) were used to analyze the data. In the current study, the only measurement that did not exceed 0.5% in dimensional change was with the stone casts produced by both the 3M ESPE PVS and Kromopan alginate impression materials at the HAPC dimension. The casts generated by impressions made using the 3M ESPE PVS impression material were the most accurate, whereas the casts generated by making digital impressions using the TRIOS-3 3Shape intraoral scanner were the least accurate among the three tested groups. The greatest number of distortions above 0.5% (at all dimensional locations) was produced by the digital models printed using the ASIGA 3D printer

    Accuracy of Master Casts Generated Using Conventional and Digital Impression Modalities: Part 2&mdash;The Full Arch Dimension

    No full text
    The aim of this study was to evaluate the accuracy of master casts generated by conventional (putty and light body consistencies polyvinyl siloxane and alginate) and digital impression techniques on a typodont master model with full-arch-prepared abutment teeth. The null hypotheses tested were as follows: (1) no statistically significant differences in accuracy between casts made by the two impression modalities and the typodont master model at each of the four locations (horizontal straight, horizontal curved, horizontal cross arch, and vertical), and (2) no statistically significant differences in dimensions measured at each of the four locations between the casts generated using the conventional and digital impression techniques. For the conventional technique, 10 impressions each were made for the typodont model using polyvinyl siloxane and alginate impression materials, and the casts were poured. For the digital technique, the typodont model was scanned 10 times using a TRIOS-3 3Shape intraoral scanner, and the casts were printed. The measurements for the horizontal (anteroposterior and cross arch) and vertical dimensions were made using a stereomicroscope and the accuracy of fabricated casts was expressed as the percentage of deviation from the typodont master model&rsquo;s values. A one-way ANOVA and Tukey&rsquo;s test (p &lt; 0.05) were used to analyze the data. In the current study, the only measurement that did not exceed 0.5% in dimensional change was with the stone casts produced by both the 3M ESPE PVS and Kromopan alginate impression materials at the HAPC dimension. The casts generated by impressions made using the 3M ESPE PVS impression material were the most accurate, whereas the casts generated by making digital impressions using the TRIOS-3 3Shape intraoral scanner were the least accurate among the three tested groups. The greatest number of distortions above 0.5% (at all dimensional locations) was produced by the digital models printed using the ASIGA 3D printer
    corecore