8 research outputs found

    Inducing Barbero-Immirzi Connections along SU(2)-reductions of Bundles on Spacetime

    Full text link
    We shall present here a general apt technique to induce connections along bundle reductions which is different from the standard restriction. This clarifies and generalizes the standard procedure to define Barbero-Immirzi (BI) connection, though on spacetime. The standard spacial BI connection used in LQG is then obtained by its spacetime version by standard restriction. The general prescription to define such a reduced connection is interesting from a mathematical viewpoint and it allows a general and direct control on transformation laws of the induced object. Moreover, unlike what happens by using standard restriction, we shall show that once a bundle reduction is given, then any connection induces a reduced connection with no constraint on the original holonomy as it happens when connections are simply restricted.Comment: 6 pages, some comments adde

    New Cases of Universality Theorem for Gravitational Theories

    Full text link
    The "Universality Theorem" for gravity shows that f(R) theories (in their metric-affine formulation) in vacuum are dynamically equivalent to vacuum Einstein equations with suitable cosmological constants. This holds true for a generic (i.e. except sporadic degenerate cases) analytic function f(R) and standard gravity without cosmological constant is reproduced if f is the identity function (i.e. f(R)=R). The theorem is here extended introducing in dimension 4 a 1-parameter family of invariants R' inspired by the Barbero-Immirzi formulation of GR (which in the Euclidean sector includes also selfdual formulation). It will be proven that f(R') theories so defined are dynamically equivalent to the corresponding metric-affine f(R) theory. In particular for the function f(R)=R the standard equivalence between GR and Holst Lagrangian is obtained.Comment: 10 pages, few typos correcte

    Gauge Formalism for General Relativity and Fermionic Matter

    Full text link
    A new formalism for spinors on curved spaces is developed in the framework of variational calculus on fibre bundles. The theory has the same structure of a gauge theory and describes the interaction between the gravitational field and spinors. An appropriate gauge structure is also given to General Relativity, replacing the metric field with spin frames. Finally, conserved quantities and superpotentials are calculated under a general covariant form.Comment: 18 pages, Plain TEX, revision, explicit expression for superpotential has been adde

    On the universality of the Carter and McLenaghan formula

    Full text link
    It is shown that the formula of the isometry generators of the spinor representation given by Carter and McLenaghan is universal in the sense that this holds for any representation either in local frames or even in natural ones. The point-dependent spin matrices in natural frames are introduced for any tensor representation deriving the covariant form of the isometry generators in these frames.Comment: 7 pages, no figure

    Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation)

    Full text link
    We present an alternative field theoretical approach to the definition of conserved quantities, based directly on the field equations content of a Lagrangian theory (in the standard framework of the Calculus of Variations in jet bundles). The contraction of the Euler-Lagrange equations with Lie derivatives of the dynamical fields allows one to derive a variational Lagrangian for any given set of Lagrangian equations. A two steps algorithmical procedure can be thence applied to the variational Lagrangian in order to produce a general expression for the variation of all quantities which are (covariantly) conserved along the given dynamics. As a concrete example we test this new formalism on Einstein's equations: well known and widely accepted formulae for the variation of the Hamiltonian and the variation of Energy for General Relativity are recovered. We also consider the Einstein-Cartan (Sciama-Kibble) theory in tetrad formalism and as a by-product we gain some new insight on the Kosmann lift in gauge natural theories, which arises when trying to restore naturality in a gauge natural variational Lagrangian.Comment: Latex file, 31 page

    Two-spinor Formulation of First Order Gravity coupled to Dirac Fields

    Get PDF
    Two-spinor formalism for Einstein Lagrangian is developed. The gravitational field is regarded as a composite object derived from soldering forms. Our formalism is geometrically and globally well-defined and may be used in virtually any 4m-dimensional manifold with arbitrary signature as well as without any stringent topological requirement on space-time, such as parallelizability. Interactions and feedbacks between gravity and spinor fields are considered. As is well known, the Hilbert-Einstein Lagrangian is second order also when expressed in terms of soldering forms. A covariant splitting is then analysed leading to a first order Lagrangian which is recognized to play a fundamental role in the theory of conserved quantities. The splitting and thence the first order Lagrangian depend on a reference spin connection which is physically interpreted as setting the zero level for conserved quantities. A complete and detailed treatment of conserved quantities is then presented.Comment: 16 pages, Plain TE
    corecore