3 research outputs found

    Overexpression of Terpenoid Biosynthesis Genes Modifies Root Growth and Nodulation in Soybean (<i>Glycine max</i>)

    No full text
    Root nodule formation in many leguminous plants is known to be affected by endogen ous and exogenous factors that affect formation, development, and longevity of nodules in roots. Therefore, it is important to understand the role of the genes which are involved in the regulation of the nodulation signaling pathway. This study aimed to investigate the effect of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. The study aimed to clarify not only the impact of over-expressing five terpene synthesis genes isolated from G. max and Salvia guaranitica on soybean nodulation signaling pathway, but also on the strigolactones pathway. The obtained results revealed that the over expression of GmFDPS, GmGGPPS, SgGPS, SgFPPS, and SgLINS genes enhanced the root nodule numbers, fresh weight of nodules, root, and root length. Moreover, the terpene content in the transgenic G. max hairy roots was estimated. The results explored that the monoterpenes, sesquiterpenes and diterpenes were significantly increased in transgenic soybean hairy roots in comparison with the control. Our results indicate the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. The study provides novel insights for understanding the epistatic relationship between terpenoids, root development, and nodulation in soybean

    Dietary Supplementation of <i>Silybum marianum</i> Seeds Improved Growth Performance and Upregulated Associated Gene Expression of Muscovy Ducklings (<i>Cairina moschata</i>)

    No full text
    The effect of feeding on diets supplemented with Silybum marianum L. dry seeds (SMS) on growth performance, mortality percentage, biochemical parameters, the expression profile of related genes, and genotoxic effect in Muscovy ducklings was evaluated during a brooding period of 4 weeks. Two hundred and forty one-day-old Muscovy ducks were randomly assigned to four treatment groups (60 ducklings/group), the first group fed on basal diet with no additives (control), and the second (4 g kg−1), third (8 g kg−1), and fourth (12 g kg−1) groups fed the basal diet supplemented with 0, 4, 8, and 12 g kg−1 diet SMS, respectively. A substantial improvement in live body weight (LBW), body weight gain (BWG), and growth rate (GR), and a decrease in feed conversion ratios (FCR) and mortality rate were shown in ducks fed a diet supplemented with either 8 g kg−1 or 12 g kg−1 SMS compared to the other groups. Relevant improvements in liver function, oxidative stress markers, purinergic cell energy, and brain appetite were recorded on ducklings fed diets supplemented with SMS. Moreover, diets which included 8 or 12 g kg−1 SMS positively upregulated the expression of growth hormone gene (GH) and antioxidant genes (SOD1, SOD2, and CAT). These results are consistent with the increase in liver activity SOD and CAT enzymes, resulting in less DNA fragmentation. Consequently, all the aforementioned improvements in biochemical parameters and gene expression profiling may explain the superiority of the treated ducklings compared with the control group. Conclusively, the SMS could be used as a natural feed additive to promote health status and improve the growth performance of small grower ducks during the brooding period

    Effective citric acid and EDTA treatments in cadmium stress tolerance in pepper (Capsicum annuum L.) seedlings by regulating specific gene expression

    No full text
    Soil contamination with toxic environmental pollutants [such as cadmium (Cd)] is becoming a serious global problem due to rapid development of social economy. To improve the growth and yield of a plant, various chelating agents, such as ethylenediaminetetraacetic acid (EDTA) and citric acid (CA), can be applied to the soil; such application not only increases plant uptake of metals from the soil but also promotes plant absorption of micronutrient fertilizers from the medium. For this purpose, we have conducted a pot experiment using the exogenous application of CA (2.5 mM) and EDTA (2.5 mM) in pepper (Capsicum annuum L.) seedlings grown under the varying levels of Cd (0, 50 and 100 µM) in the soil. M]. Our results depicted that Cd addition to the soil significantly (P \u3c 0.05) decreased plant growth and biomass, gas exchange attributes, and mineral uptake by C. annuum when compared to the plants grown without the addition of Cd. However, Cd toxicity boosted the production of reactive oxygen species (ROS) by increasing the content of malondialdehyde (MDA), which is the indication of oxidative stress in C. annuum, and was also manifested by hydrogen peroxide (H2O2) content and electrolyte leakage to the membrane-bound organelles. The results showed that the activities of various antioxidative enzymes, such as superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their specific gene expression and also the content of non-enzymatic antioxidants, such as phenolic, flavonoid, ascorbic acid, and anthocyanin, initially increased with an increase in the Cd concentration in the soil. The results also revealed that the levels of soluble sugar, reducing sugar, and non-reducing sugar were decreased in plants grown under elevating Cd levels, but the accumulation of the metal in the roots and shoots of C. annuum, was found to be increased. The negative impacts of Cd injury were reduced by the application of EDTA and CA, which increased plant growth and biomass, improved photosynthetic apparatus, antioxidant enzymes and their gene expression, and mineral uptake, as well as diminished the exudation of organic acids and oxidative stress indicators in C. annuum by decreasing Cd toxicity. Here, we conclude that the application of EDTA and CA under the exposure to Cd stress significantly improved plant growth and biomass, photosynthetic pigments, and gas exchange characteristics; regulated antioxidant defense system and essential nutrient uptake; and balanced organic acid exudation pattern in C. annuum
    corecore