8 research outputs found

    Schloss: Blockchain-Based System Architecture for Secure Industrial IoT

    No full text
    Industrial companies can use blockchain to assist them in resolving their trust and security issues. In this research, we provide a fully distributed blockchain-based architecture for industrial IoT, relying on trust management and reputation to enhance nodes’ trustworthiness. The purpose of this contribution is to introduce our system architecture to show how to secure network access for users with dynamic authorization management. All decisions in the system are made by trustful nodes’ consensus and are fully distributed. The remarkable feature of this system architecture is that the influence of the nodes’ power is lowered depending on their Proof of Work (PoW) and Proof of Stake (PoS), and the nodes’ significance and authority is determined by their behavior in the network. This impact is based on game theory and an incentive mechanism for reputation between nodes. This system design can be used on legacy machines, which means that security and distributed systems can be put in place at a low cost on industrial systems. While there are no numerical results yet, this work, based on the open questions regarding the majority problem and the proposed solutions based on a game-theoretic mechanism and a trust management system, points to what and how industrial IoT and existing blockchain frameworks that are focusing only on the power of PoW and PoS can be secured more effectively

    Schloss: Blockchain-Based System Architecture for Secure Industrial IoT

    No full text
    Industrial companies can use blockchain to assist them in resolving their trust and security issues. In this research, we provide a fully distributed blockchain-based architecture for industrial IoT, relying on trust management and reputation to enhance nodes’ trustworthiness. The purpose of this contribution is to introduce our system architecture to show how to secure network access for users with dynamic authorization management. All decisions in the system are made by trustful nodes’ consensus and are fully distributed. The remarkable feature of this system architecture is that the influence of the nodes’ power is lowered depending on their Proof of Work (PoW) and Proof of Stake (PoS), and the nodes’ significance and authority is determined by their behavior in the network. This impact is based on game theory and an incentive mechanism for reputation between nodes. This system design can be used on legacy machines, which means that security and distributed systems can be put in place at a low cost on industrial systems. While there are no numerical results yet, this work, based on the open questions regarding the majority problem and the proposed solutions based on a game-theoretic mechanism and a trust management system, points to what and how industrial IoT and existing blockchain frameworks that are focusing only on the power of PoW and PoS can be secured more effectively

    SBTMS: Scalable Blockchain Trust Management System for VANET

    No full text
    With many advances in sensor technology and the Internet of Things, Vehicle Ad Hoc Net- work (VANET) is becoming a new generation. VANET’s current technical challenges are deploying decentralized architecture and protecting privacy. Because Blockchain features are decentralized, distributed, mass storage, and non-manipulation features, this paper designs a new decentralized architecture using Blockchain technology called Blockchain-based VANET. Blockchain-based VANET can effectively resolve centralized problems and mutual distrust between VANET units. To achieve this, it is needed to provide scalability on the blockchain to run for VANET. In this system, our focus is on the reliability of incoming messages on the network. Vehicles check the validity of the received messages using the proposed Bayesian formula for trust management system and some information saved in the Blockchain. Then, based on the validation result, the vehicle computes a rate for each message type and message source vehicle. Vehicles upload the computed rates to Roadside Units (RSUs) in order to calculate the net reliability value. Finally, RSUs using a sharding consensus mechanism generate blocks, including the net reliability value as a transaction. In this system, all RSUs collaboratively maintain the latest updated Blockchain. Our experimental results show that the proposed system is effective, scalable and dependable in data gathering, computing, organization, and retrieval of trust values in VANET

    Machine Learning Models in Industrial Blockchain, Attacks and Contribution

    No full text
    The importance of machine learning has been increasing dramatically for years. From assistance systems to production optimisation to support the health sector, almost every area of daily life and industry comes into contact with machine learning. Besides all the benefits that ML brings, the lack of transparency and the difficulty in creating traceability pose major risks. While there are solutions that make the training of machine learning models more transparent, traceability is still a major challenge. Ensuring the identity of a model is another challenge. Unnoticed modification of a model is also a danger when using ML. One solution is to create an ML birth certificate and an ML family tree secured by blockchain technology. Important information about training and changes to the model through retraining can be stored in a blockchain and accessed by any user to create more security and traceability about an ML model

    Verifiable Machine Learning Models in Industrial IoT via Blockchain

    No full text
    The importance of machine learning (ML) has been increasing dramatically for years. From assistance systems to production optimisation to healthcare support, almost every area of daily life and industry is coming into contact with machine learning. Besides all the benefits ML brings, the lack of transparency and difficulty in creating traceability pose major risks. While solutions exist to make the training of machine learning models more transparent, traceability is still a major challenge. Ensuring the identity of a model is another challenge, as unnoticed modification of a model is also a danger when using ML. This paper proposes to create an ML Birth Certificate and ML Family Tree secured by blockchain technology. Important information about training and changes to the model through retraining can be stored in a blockchain and accessed by any user to create more security and traceability about an ML model

    Machine Learning Models in Industrial Blockchain, Attacks and Contribution

    No full text
    The importance of machine learning has been increasing dramatically for years. From assistance systems to production optimisation to support the health sector, almost every area of daily life and industry comes into contact with machine learning. Besides all the benefits that ML brings, the lack of transparency and the difficulty in creating traceability pose major risks. While there are solutions that make the training of machine learning models more transparent, traceability is still a major challenge. Ensuring the identity of a model is another challenge. Unnoticed modification of a model is also a danger when using ML. One solution is to create an ML birth certificate and an ML family tree secured by blockchain technology. Important information about training and changes to the model through retraining can be stored in a blockchain and accessed by any user to create more security and traceability about an ML model

    Security Audit of a Blockchain-Based Industrial Application Platform

    No full text
    In recent years, both the Internet of Things (IoT) and blockchain technologies have been highly influential and revolutionary. IoT enables companies to embrace Industry 4.0, the Fourth Industrial Revolution, which benefits from communication and connectivity to reduce cost and to increase productivity through sensor-based autonomy. These automated systems can be further refined with smart contracts that are executed within a blockchain, thereby increasing transparency through continuous and indisputable logging. Ideally, the level of security for these IoT devices shall be very high, as they are specifically designed for this autonomous and networked environment. This paper discusses a use case of a company with legacy devices that wants to benefit from the features and functionality of blockchain technology. In particular, the implications of retrofit solutions are analyzed. The use of the BISS:4.0 platform is proposed as the underlying infrastructure. BISS:4.0 is intended to integrate the blockchain technologies into existing enterprise environments. Furthermore, a security analysis of IoT and blockchain present attacks and countermeasures are presented that are identified and applied to the mentioned use case

    Schloss: Blockchain-Based System Architecture for Secure Industrial IoT

    No full text
    Industrial companies can use blockchain to assist them in resolving their trust and security issues. In this research, we provide a fully distributed blockchain-based architecture for industrial IoT, relying on trust management and reputation to enhance nodes’ trustworthiness. The purpose of this contribution is to introduce our system architecture to show how to secure network access for users with dynamic authorization management. All decisions in the system are made by trustful nodes’ consensus and are fully distributed. The remarkable feature of this system architecture is that the influence of the nodes’ power is lowered depending on their Proof of Work (PoW) and Proof of Stake (PoS), and the nodes’ significance and authority is determined by their behavior in the network. This impact is based on game theory and an incentive mechanism for reputation between nodes. This system design can be used on legacy machines, which means that security and distributed systems can be put in place at a low cost on industrial systems. While there are no numerical results yet, this work, based on the open questions regarding the majority problem and the proposed solutions based on a game-theoretic mechanism and a trust management system, points to what and how industrial IoT and existing blockchain frameworks that are focusing only on the power of PoW and PoS can be secured more effectively
    corecore