55 research outputs found
Contextual Fear Conditioning Alter Microglia Number and Morphology in the Rat Dorsal Hippocampus
Contextual fear conditioning is a Pavlovian conditioning paradigm capable of rapidly creating fear memories to contexts, such as rooms or chambers. Contextual fear conditioning protocols have long been utilized to evaluate how fear memories are consolidated, maintained, expressed, recalled, and extinguished within the brain. These studies have identified the lateral portion of the amygdala and the dorsal portion of the hippocampus as essential for contextual fear memory consolidation. The current study was designed to evaluate how two different contextual fear memories alter amygdala and hippocampus microglia, brain derived neurotrophic factor (BDNF), and phosphorylated cyclic-AMP response element binding (pCREB). We find rats provided with standard contextual fear conditioning to have more microglia and more cells expressing BDNF in the dentate gyrus as compared to a context only control group. Additionally, standard contextual fear conditioning altered microglia morphology to become amoeboid in shape – a common response to central nervous system insult, such as traumatic brain injury, infection, ischemia, and more. The unpaired fear conditioning procedure (whereby non-reinforced and non-overlapping auditory tones were provided at random intervals during conditioning), despite producing equivalent levels of fear as the standard procedure, did not alter microglia, BDNF or pCREB number in any dorsal hippocampus or lateral amygdala brain regions. Despite this, the unpaired fear conditioning protocol produced some alterations in microglia morphology, but less compared to rats provided with standard contextual fear conditioning. Results from this study demonstrate that contextual fear conditioning is capable of producing large alterations to dentate gyrus plasticity and microglia, whereas unpaired fear conditioning only produces minor changes to microglia morphology. These data show, for the first time, that Pavlovian fear conditioning protocols can induce similar responses as trauma, infection or other insults within the central nervous system
A novel method using intranasal delivery of EdU demonstrates that accessory olfactory ensheathing cells respond to injury by proliferation
Olfactory ensheathing cells (OECs) play an important role in the continuous regeneration of the primary olfactory nervous system throughout life and for regeneration of olfactory neurons after injury. While it is known that several individual OEC subpopulations with distinct properties exist in different anatomical locations, it remains unclear how these different subpopulations respond to a major injury. We have examined the proliferation of OECs from one distinct location, the peripheral accessory olfactory nervous system, following large-scale injury (bulbectomy) in mice. We used crosses of two transgenic reporter mouse lines, S100ß-DsRed and OMP-ZsGreen, to visualise OECs, and main/accessory olfactory neurons, respectively. We surgically removed one olfactory bulb including the accessory olfactory bulb to induce degeneration, and found that accessory OECs in the nerve bundles that terminate in the accessory olfactory bulb responded by increased proliferation with a peak occurring 2 days after the injury. To label proliferating cells we used the thymidine analogue ethynyl deoxyuridine (EdU) using intranasal delivery instead of intraperitoneal injection. We compared and quantified the number of proliferating cells at different regions at one and four days after EdU labelling by the two different methods and found that intranasal delivery method was as effective as intrapeitoneal injection. We demonstrated that accessory OECs actively respond to widespread degeneration of accessory olfactory axons by proliferating. These results have important implications for selecting the source of OECs for neural regeneration therapies and show that intranasal delivery of EdU is an efficient and reliable method for assessing proliferation of olfactory glia
Virtual dissection table case studies for undergraduate neuroanatomy written assignments
Neuroanatomy education benefits from cadaveric specimens, yet challenges with access, cost, and health concerns exist. Virtual Dissection Tables (VDTs) offer digital alternatives to traditional cadaveric learning. This article evaluates the pedagogical value of VDTs in undergraduate neuroanatomy education. While VDTs, primarily Anatomage, offer interactive 3D cadaveric images and customization options, research on their impact on neuroanatomy learning outcomes remains limited. Existing studies suggest comparable knowledge retention between VDTs and cadaveric learning, with varying effects on student satisfaction. However, investigations of non-exam-based neuroanatomy assessments are scarce. This study presents a case study using VDTs as the basis for a neuroscience assignment report, exploring its construction, and evaluating its strengths, and weaknesses through a student survey. Implemented in an advanced neuroscience course, the assignment involves analyzing 3D reconstructed MRI scans of neuropathological conditions displayed on the VDT. The task requires students to collate, analyze, and predict symptoms based on the pathology observed, aligning their findings with neuroscience literature. This innovative approach aims to enhance research and academic writing skills while expanding the use of VDTs beyond traditional assessment formats in neuroscience education. We found that the case-study format utilized benefited students’ neuroanatomy learning and application ability. However, further studies should be conducted to understand the effect of VDT use on learning outcomes in case study contexts
The sorting behaviour of olfactory and vomeronasal axons during regeneration
In order to begin to understand how primary olfactory and vomeronasal organ (VNO) axons target specific regions of the olfactory bulb, we examined the sorting behaviour of these axons following neonatal unilateral olfactory bulbectomy. Bulbectomy induced widespread ipsilateral death of the primary olfactory and VNO neurons. After 4 weeks, many new sensory axons had re-grown into the cranial cavity and established a prominent plexus with evidence of dense tufts that were similar in gross appearance to glomeruli. Axons expressing the cell adhesion molecule OCAM, which normally innervate the ventrolateral and rostral halves of the main and accessory olfactory bulbs, respectively, sorted out and segregated from those axons not expressing this molecule within the plexus. In addition, VNO axons formed large discrete bundles that segregated from main olfactory axons within the plexus. Thus, VNO and primary olfactory axons as well as discrete subpopulations of both are able to sort out and remain segregated in the absence of the olfactory bulb. Sorting and convergence of axons therefore occur independently of the olfactory bulb and are probably attributable either to inherent properties of the axons themselves or to interactions between the axons and accompanying glial ensheathing cells.</p
Factors that modulate olfactory dysfunction
The olfactory system is one of a few areas in the nervous system which is capable of regeneration throughout the life. Olfactory sensory neurons reside in the nasal cavity are continuously replenished with new neurons arising from stem cells. Some factors such as aging, neurodegenerative diseases, head trauma, brain tumor extraction and infection cause olfactory dysfunction which significantly influences physical wellbeing, quality of life, mental health, nutritional status, memory processes, identifying danger and is associated with increased mortality. Therefore, finding a treatment to improve olfactory dysfunction is needed. Recent research efforts in the field have shown some very promising new approaches to treat olfactory dysfunction. This review explores the current studies that have addressed therapeutic approaches to improve olfactory neuron regeneration based on cell transplantation therapy, modulation of physiological olfactory dysfunction and drug treatments
Communication between two neurogenic zones in the adult mouse nervous system
There is ongoing neurogenesis in the subventricular zone (SVZ) of the adult brain which supplies interneurons to the olfactory bulb. There is also continuous neurogenesis in the olfactory epithelium (OE) supplying new olfactory sensory neurons whose axons terminate in the olfactory bulb. These axons synapse with tyrosine hydroxylase-positive periglomerular neurons within the olfactory bulb, which are the product of subventricular zone neurogenesis. We hypothesize that focal denervation of the olfactory sensory neurons and thereby lesioning of the presynaptic input to the Type 1 neurons would result in their degeneration, and a subsequent upregulation of subventricular zone neurogenesis. Adult mice (n=26) were treated with methimazole causing the ablation of the OE, and the tissues examined at multiple time-points after treatment. The survival of the olfactory sensory neurons within the OE was assessed together with their terminals within glomeruli of the olfactory bulb. The loss of tyrosine hydroxylase periglomerular neurons was quantified. Cell proliferation in the SVZ was also quantified using an antibody to Ki67, a marker of proliferating cells, and EdU, a thymidine analogue to track DNA synthesis. Methimazole treatment led to loss of olfactory sensory neurons in the OE, loss of their terminals in the glomeruli and loss of tyrosine-hydroxylase-positive periglomerular neurons in the olfactory bulb 14-18 days later (p=0.05). Cell proliferation in the SVZ was increased 14 days post methimazole treatment (p=0.02). The results are consistent with our hypothesis that neurogenesis in the brain has a common neurogenic axis with the olfactory neuroepithelium. We propose the presence of a signalling pathway between these two neurogenic zones, which remains to be elucidated.Full Tex
Implantation of a scaffold following bulbectomy induces laminar organization of regenerating olfactory axons
Primary olfactory axons expressing different odorant receptors are interspersed within the olfactory nerve. However, upon reaching the outer nerve fiber layer of the olfactory bulb they defasciculate, sort out, and refasciculate prior to targeting glomeruli in fixed topographic positions. While odorant receptors are crucial for the final targeting of axons to glomeruli, it is unclear what directs the formation of the nerve fiber and glomerular layers of the olfactory bulb. While the olfactory bulb itself may provide instructive cues for the development of these layers, it is also possible that the incoming axons may simply require the presence of a physical scaffold to establish the outer laminar cytoarchitecture. In order to begin to understand the underlying role of the olfactory bulb in development of the outer layers of the olfactory bulb, we physically ablated the olfactory bulbs in OMP-IRES-LacZ and P2-IRES-tau-LacZ neonatal mice and replaced them with artificial biological scaffolds molded into the shape of an olfactory bulb. Regenerating axons projected around the edge of the cranial cavity at the periphery of the artificial scaffold and were able to form an olfactory nerve fiber layer and, to some extent, a glomerular layer. Our results reveal that olfactory axons are able to form rudimentary cytoarchitectonic layers if they are provided with an appropriately shaped biological scaffold. Thus, the olfactory bulb does not appear to provide any tropic substance that either attracts regenerating olfactory axons into the cranial cavity or induces these axons to form a plexus around its outer surface. (c) 2006 Elsevier B.V. All rights reserved
Rediscovering a Forgotten Link: TSPO and RIM-BP1 in Appetite Regulation
The translocator protein of 18 kDa (TSPO) and RIM binding protein 1 (RIM-BP1) are both heavily expressed in neurons at the olfactory bulb. These proteins have overlapping functional profiles and are both implicated in the development of obesity. Over 20 years ago, a yeast 2-hybrid experiment discovered that RIM-BP1 interacts with a peptide constructed from a fraction of the TSPO sequence. Considering these data, the authors predict that the interaction between RIM-BP1 and TSPO could alter the olfactory system’s mediation of appetite. Despite the therapeutic potential of this interaction, it has never been confirmed if the full TSPO protein and RIM-BP1 interact. The interaction is instead often cited as physiologically irrelevant. This commentary revisits the forgotten interaction between TSPO and RIM-BP1, reviewing all relevant literature discussing their relationship. Contrary to common discourse that the RIM-BP1 and TSPO are potential binding partners, while the interaction may regulate many neurological functions, existing evidence suggests that the interaction would have a specific role in odor-guided appetite. Further research into the nutritional neuroscientific consequences of TSPO/RIM-BP1 interactions should therefore be conducted
- …
