1,671 research outputs found

    The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance

    Full text link
    Dynamics of reentry are studied in a one dimensional loop of model cardiac cells with discrete intercellular gap junction resistance (RR). Each cell is represented by a continuous cable with ionic current given by a modified Beeler-Reuter formulation. For RR below a limiting value, propagation is found to change from period-1 to quasi-periodic (QPQP) at a critical loop length (LcritL_{crit}) that decreases with RR. Quasi-periodic reentry exists from LcritL_{crit} to a minimum length (LminL_{min}) that is also shortening with RR. The decrease of Lcrit(R)L_{crit}(R) is not a simple scaling, but the bifurcation can still be predicted from the slope of the restitution curve giving the duration of the action potential as a function of the diastolic interval. However, the shape of the restitution curve changes with RR.Comment: 6 pages, 7 figure

    Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure

    Full text link
    High pressure structural distortions of the hexagonal close packed (hcp) element zinc have been a subject of controversy. Earlier experimental results and theory showed a large anomaly in lattice strain with compression in zinc at about 10 GPa which was explained theoretically by a change in Fermi surface topology. Later hydrostatic experiments showed no such anomaly, resulting in a discrepancy between theory and experiment. We have computed the compression and lattice strain of hcp zinc over a wide range of compressions using the linearized augmented plane wave (LAPW) method paying special attention to k-point convergence. We find that the behavior of the lattice strain is strongly dependent on k-point sampling, and with large k-point sets the previously computed anomaly in lattice parameters under compression disappears, in agreement with recent experiments.Comment: 9 pages, 6 figures, Phys. Rev. B (in press

    The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay

    Full text link
    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.Comment: Presentation for the Rutherford Centennial Conference on Nuclear Physic

    The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Full text link
    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76-Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76-Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76-Ge neutrinoless double-beta decay Q-value of 2039 keV.Comment: Submitted to AIP Conference Proceedings, 19th Particles & Nuclei International Conference (PANIC 2011), Massachusetts Institute of Technology, Cambridge, MA, USA, July 24-29, 2011; 3 pages, 1 figur

    Observation of D0ρ0γD^0\to \rho^0\gamma and search for CPCP violation in radiative charm decays

    Full text link
    We report the first observation of the radiative charm decay D0ρ0γD^0 \to \rho^0 \gamma and the first search for CPCP violation in decays D0ρ0γD^0 \to \rho^0 \gamma, ϕγ\phi\gamma, and K0γ\overline{K}{}^{*0} \gamma, using a data sample of 943 fb1^{-1} collected with the Belle detector at the KEKB asymmetric-energy e+ee^+e^- collider. The branching fraction is measured to be B(D0ρ0γ)=(1.77±0.30±0.07)×105\mathcal{B}(D^0 \to \rho^0 \gamma)=(1.77 \pm 0.30 \pm 0.07) \times 10^{-5}, where the first uncertainty is statistical and the second is systematic. The obtained CPCP asymmetries, ACP(D0ρ0γ)=+0.056±0.152±0.006\mathcal{A}_{CP}(D^0 \to \rho^0 \gamma)=+0.056 \pm 0.152 \pm 0.006, ACP(D0ϕγ)=0.094±0.066±0.001\mathcal{A}_{CP}(D^0 \to \phi \gamma)=-0.094 \pm 0.066 \pm 0.001, and ACP(D0K0γ)=0.003±0.020±0.000\mathcal{A}_{CP}(D^0 \to \overline{K}{}^{*0} \gamma)=-0.003 \pm 0.020 \pm 0.000, are consistent with no CPCP violation. We also present an improved measurement of the branching fractions B(D0ϕγ)=(2.76±0.19±0.10)×105\mathcal{B}(D^0 \to \phi \gamma)=(2.76 \pm 0.19 \pm 0.10) \times 10^{-5} and B(D0K0γ)=(4.66±0.21±0.21)×104\mathcal{B}(D^0 \to \overline{K}{}^{*0} \gamma)=(4.66 \pm 0.21 \pm 0.21) \times 10^{-4}

    Measurement of eta_c(1S), eta_c(2S) and non-resonant eta' pi+ pi- production via two-photon collisions

    Full text link
    We report the measurement of gamma gamma to eta_c(1S), eta_c(2S) to eta' pi+ pi- with eta' decays to gamma rho and eta pi+ pi- using 941 fb^{-1} of data collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. The eta_c(1S) mass and width are measured to be M = [2984.6\pm0.7 (stat.)\pm2.2 (syst.)] MeV/c^{2} and \Gamma = [30.8^{+2.3}_{-2.2}~(stat.) \pm 2.5~(syst.)] MeV, respectively. First observation of eta_c(2S) to eta' pi+ pi- with a significance of 5.5sigma including systematic error is obtained, and the eta_c(2S) mass is measured to be M = [3635.1\pm3.7~(stat.)\pm2.9~(syst.)] MeV/c^{2}. The products of the two-photon decay width and branching fraction (B) of decays to eta'pi+ pi- are determined to be \Gamma_{gamma gamma}B = [65.4\pm2.6~(stat.)\pm6.9~(syst.)] eV for eta_c(1S) and [5.6^{+1.2}_{-1.1}~(stat.)\pm1.1~(syst.)] eV for eta_c(2S). A new decay mode for the eta_c(1S) to eta'f_0(2080) with f_0(2080) to pi+ pi- is observed with a statistical significance of 20sigma. The f_0(2080) mass and width are determined to be M = [2083^{+63}_{-66}~(stat.)\pm 32~(syst.)] MeV/c^{2} and \Gamma = [178^{+60}_{-178}~(stat.) \pm 55~(syst.)] MeV. The cross sections for gamma gamma to eta' pi+ pi- and eta'f_{2}(1270) are measured for the first time.Comment: 19 pages, 14 figure

    The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Full text link
    The {\sc Majorana} collaboration is searching for neutrinoless double beta decay using 76^{76}Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, 155015 - 50 meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of \sim1 count/t-y or lower in the region of the signal. The {\sc Majorana} collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the {\sc Demonstrator}, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which \sim30 kg will be enriched to 87% in 76^{76}Ge. The {\sc Demonstrator} is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the {\sc Demonstrator} is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.Comment: Proceedings for the MEDEX 2013 Conferenc
    corecore