135 research outputs found

    Majorana One-Tonne Cryostat Cooling Conceptual Feasibility Study Rev 1

    Get PDF
    This report evaluates the conceptual plans for a cryostat cooling design for the MAJORANA DEMONSTRATOR (MJD) one-tonne (S4) experiment. This document is based upon previous design work and experimental results used to evaluate the current MJD thermal design. A feasibility study of a cooling system for S4 based on the MJD thermosiphon experiment is presented. The one-tonne experiment will be a scaled up version of the MJD. There will be many cryostats in the S4 experiment. In this document a cryostat with up to 19 strings of germanium crystals is analyzed. Aside from an extra outer ring of crystals, the geometry of the cryostat for S4 is very similar to that for the MJD thermosiphon experiment. The materials used in the fabrication of both of these ultra-low background experiments will be underground-electroformed copper. The current MJD uses a two-phase liquid-gas cooling system to provide constant operating temperature. This document presents a theoretical investigation of a cooling system for the S4 experiment and evaluates the heat transfer performance requirements for such a system

    Design Considerations for Large Mass Ultra-Low Background Experiments

    Get PDF
    Summary The objective of this document is to present the designers of the next generation of large-mass, ultra-low background experiments with lessons learned and design strategies from previous experimental work. Design issues divided by topic into mechanical, thermal and electrical requirements are addressed. Large mass low-background experiments have been recognized by the scientific community as appropriate tools to aid in the refinement of the standard model. The design of these experiments is very costly and a rigorous engineering review is required for their success. The extreme conditions that the components of the experiment must withstand (heavy shielding, vacuum/pressure and temperature gradients), in combination with unprecedented noise levels, necessitate engineering guidance to support quality construction and safe operating conditions. Physical properties and analytical results of typical construction materials are presented. Design considerations for achieving ultra-low-noise data acquisition systems are addressed. Five large-mass, low-background conceptual designs for the one-tonne scale germanium experiment are proposed and analyzed. The result is a series of recommendations for future experiments engineering and for the Majorana simulation task group to evaluate the different design approaches

    Construction and Testing of a Low-power Cryostat for MARS

    Get PDF
    A low-power cryostat was designed and built for the Multi-sensor Airborne Radiation Survey (MARS) project for the purpose of housing a close-packed high-purity germanium (HPGe) detector array of 14 HPGe detectors. The power consumption of the cold mass in the cryostat was measured to be 4.07(11) watts, sufficient for 5.5 days of continuous operation using only 8 liters of liquid nitrogen. Temperatures throughout the cryostat were measured by platinum resistance temperature detectors. These measurements were used to determine the emissivity of the copper used in the floating radiation shield and outer cryostat wall, which was constructed using chemically cleaned and passivated copper metal. Using a PNNL-developed passivation process, an emissivity of 2.5(3)% was achieved for copper

    MARS Flight Engineering Status

    Get PDF
    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09

    Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure

    Full text link
    High pressure structural distortions of the hexagonal close packed (hcp) element zinc have been a subject of controversy. Earlier experimental results and theory showed a large anomaly in lattice strain with compression in zinc at about 10 GPa which was explained theoretically by a change in Fermi surface topology. Later hydrostatic experiments showed no such anomaly, resulting in a discrepancy between theory and experiment. We have computed the compression and lattice strain of hcp zinc over a wide range of compressions using the linearized augmented plane wave (LAPW) method paying special attention to k-point convergence. We find that the behavior of the lattice strain is strongly dependent on k-point sampling, and with large k-point sets the previously computed anomaly in lattice parameters under compression disappears, in agreement with recent experiments.Comment: 9 pages, 6 figures, Phys. Rev. B (in press

    Sleep Health Issues for Children with FASD: Clinical Considerations

    Get PDF
    This article describes the combined clinical experience of a multidisciplinary group of professionals on the sleep disturbances of children with fetal alcohol spectrum disorders (FASD) focusing on sleep hygiene interventions. Such practical and comprehensive information is not available in the literature. Severe, persistent sleep difficulties are frequently associated with this condition but few health professionals are familiar with both FASD and sleep disorders. The sleep promotion techniques used for typical children are less suitable for children with FASD who need individually designed interventions. The types, causes, and adverse effects of sleep disorders, the modification of environment, scheduling and preparation for sleep, and sleep health for their caregivers are discussed. It is our hope that parents and also researchers, who are interested in the sleep disorders of children with FASD, will benefit from this presentation and that this discussion will stimulate much needed evidence-based research

    Performance of the Ultra-High Rate Germanium (UHRGe) System

    Full text link
    Performance of the Ultra-High Rate Germanium (UHRGe) System client repor

    Initial Component Testing for a Germanium Array Cryostat

    Get PDF
    This report describes progress on the construction of two ultra-low-background cryostats that are part of the NA-22 funded “Radionuclide Laboratories” (RN Labs) project. Each cryostat will house seven high-purity germanium crystals (HPGe). These cryostats are being built from a limited set of materials that are known to have very low levels of radioactive impurities. The RN Labs instrument is designed to take advantage of low background performance, high detection efficiency, and - coincidence signatures to provide unprecedented gamma spectroscopy sensitivity. The project is focused on improving gamma analysis capabilities for nuclear detonation detection (NDD) applications. The instrument also has the potential for basic nuclear physics research. Section 1 provides the background for the project. Section 2 discusses germanium crystal acceptance testing. Design problems were found after the first delivery of new detectors from the vendor, Canberra Semiconductors. The first four crystals were returned for repair, resulting in a delay in crystal procurement. Section 3 provides an update on copper electroforming. In general, electroforming parts for RN Labs has proceeded smoothly, but there have been recent problems in electroforming three large copper parts necessary for the project. Section 4 describes the first round of testing for the instrument: anti-cosmic scintillator testing, electronics testing, and initial vacuum testing. Section 5 concludes with an overall description of the state of the project and challenges that remain
    corecore