481 research outputs found
Approximation of Stochastic Partial Differential Equations by a Kernel-based Collocation Method
In this paper we present the theoretical framework needed to justify the use
of a kernel-based collocation method (meshfree approximation method) to
estimate the solution of high-dimensional stochastic partial differential
equations (SPDEs). Using an implicit time stepping scheme, we transform
stochastic parabolic equations into stochastic elliptic equations. Our main
attention is concentrated on the numerical solution of the elliptic equations
at each time step. The estimator of the solution of the elliptic equations is
given as a linear combination of reproducing kernels derived from the
differential and boundary operators of the SPDE centered at collocation points
to be chosen by the user. The random expansion coefficients are computed by
solving a random system of linear equations. Numerical experiments demonstrate
the feasibility of the method.Comment: Updated Version in International Journal of Computer Mathematics,
Closed to Ye's Doctoral Thesi
IL METODO DELLE SOLUZIONI FONDAMENTALI PER LA SOLUZIONE DEL PROBLEMA DIRETTO M/EEG
The research already started on the mesh-free solution of the M / EEG direct problem has led to the development of a solver based on the method of fundamental solutions (MFS, method of fundamental solutions) able to manage the physical-geometric complexity of realistic models of the head more efficiently than traditional
ADVANCED BIO-ELECTROMAGNETIC NUMERICAL MODELLING AND ICT FOR HUMAN BRAIN RESEARCH
Functional imaging is used in the research area
neurological, neurophysiology and cognitive psychology, for the diagnosis of diseases
metabolic and for the detection of thin / squamous lesions (eg Alzheimer's disease) and for
the development of neural interfaces (brain-computer interfaces - BCI)
Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Distributional Operators
In this paper we introduce a generalized Sobolev space by defining a
semi-inner product formulated in terms of a vector distributional operator
consisting of finitely or countably many distributional operators
, which are defined on the dual space of the Schwartz space. The types of
operators we consider include not only differential operators, but also more
general distributional operators such as pseudo-differential operators. We
deduce that a certain appropriate full-space Green function with respect to
now becomes a conditionally positive
definite function. In order to support this claim we ensure that the
distributional adjoint operator of is
well-defined in the distributional sense. Under sufficient conditions, the
native space (reproducing-kernel Hilbert space) associated with the Green
function can be isometrically embedded into or even be isometrically
equivalent to a generalized Sobolev space. As an application, we take linear
combinations of translates of the Green function with possibly added polynomial
terms and construct a multivariate minimum-norm interpolant to data
values sampled from an unknown generalized Sobolev function at data sites
located in some set . We provide several examples, such
as Mat\'ern kernels or Gaussian kernels, that illustrate how many
reproducing-kernel Hilbert spaces of well-known reproducing kernels are
isometrically equivalent to a generalized Sobolev space. These examples further
illustrate how we can rescale the Sobolev spaces by the vector distributional
operator . Introducing the notion of scale as part of the
definition of a generalized Sobolev space may help us to choose the "best"
kernel function for kernel-based approximation methods.Comment: Update version of the publish at Num. Math. closed to Qi Ye's Ph.D.
thesis (\url{http://mypages.iit.edu/~qye3/PhdThesis-2012-AMS-QiYe-IIT.pdf}
- …