2,922 research outputs found
Local quasiparticle density of states of superconducting SmFeAsOF single crystals: Evidence for spin-mediated pairing
We probe the local quasiparticles density-of-states in micron-sized
SmFeAsOF single-crystals by means of Scanning Tunnelling
Spectroscopy. Spectral features resemble those of cuprates, particularly a
dip-hump-like structure developed at energies larger than the gap that can be
ascribed to the coupling of quasiparticles to a collective mode, quite likely a
resonant spin mode. The energy of the collective mode revealed in our study
decreases when the pairing strength increases. Our findings support
spin-fluctuation-mediated pairing in pnictides.Comment: 11 pages, 4 figure
Distinguishing double neutron star from neutron star-black hole binary populations with gravitational wave observations
Gravitational waves from the merger of two neutron stars cannot be easily
distinguished from those produced by a comparable-mass mixed binary in which
one of the companions is a black hole. Low-mass black holes are interesting
because they could form in the aftermath of the coalescence of two neutron
stars, from the collapse of massive stars, from matter overdensities in the
primordial Universe, or as the outcome of the interaction between neutron stars
and dark matter. Gravitational waves carry the imprint of the internal
composition of neutron stars via the so-called tidal deformability parameter,
which depends on the stellar equation of state and is equal to zero for black
holes. We present a new data analysis strategy powered by Bayesian inference
and machine learning to identify mixed binaries, hence low-mass black holes,
using the distribution of the tidal deformability parameter inferred from
gravitational-wave observations.Comment: 13 pages, 6 figures - v2: matches the published version in Phys. Rev.
D 102, 02302
Current pharmacological treatment of idiopathic inflammatory myopathies
The idiopathic inflammatory myopathies are uncommon and heterogeneous disorders. Their classification is based on distinct clinicopathologic features. Although idiopathic inflammatory myopathies share some similarities, different subtypes may have variable responses to therapy, so it is very important to distinguish the correct subtype.
There are few randomised, double blind placebo controlled studies to support the current treatment. High dose corticosteroids continue to be the first-line therapy and other immunosupressive drugs are used in refractory cases, as well as steroid-sparing agents.
Some novel therapeutic approaches have emerged as potential treatment including tacrolimus, intravenous immunoglobulin and rituximab, following good outcomes reported in case studies. However, more randomised controlled trials are needed.
This review considers the current and the potential future therapies for inflammatory myopathies
Polaronic signature in the metallic phase of La0.7Ca0.3MnO3 films detected by scanning tunneling spectroscopy
In this work we map tunnel conductance curves with nanometric spatial
resolution, tracking polaronic quasiparticle excitations when cooling across
the insulator-to-metal transition in La0.7Ca0.3MnO3 films. In the insulating
phase the spectral signature of polarons, a depletion of conductance at low
bias flanked by peaks, is detected all over the scanned surface. These features
are still observed at the transition and persist on cooling into the metallic
phase. Polaron-binding energy maps reveal that polarons are not confined to
regions embedded in a highly-conducting matrix but are present over the whole
field of view both above and below the transition temperature.Comment: 10 pages, 4 figure
The M(BH)-Sigma Relation for Supermassive Black Holes
We investigate the differences in the M(BH)-sigma relation derived recently
by Ferrarese & Merritt (2000) and Gebhardt et al. (2000). The shallower slope
found by the latter authors (3.75 vs. 4.8) is due partly to the use of a
regression algorithm that ignores measurement errors, and partly to the value
of the velocity dispersion adopted for a single galaxy, the Milky Way. A
steeper relation is shown to provide a better fit to black hole masses derived
from reverberation mapping studies. Combining the stellar dynamical, gas
dynamical, and reverberation mapping mass estimates, we derive a best-fit
relation M(BH) = 1.30 (+/- 0.36) X 10^8 (sigma_c/200)^{4.72(+/- 0.36)}, where
M(BH) is in solar masses, and sigma in km/s.Comment: The Astrophysical Journal, in pres
Looking at COVID-19 from a Systems Biology Perspective
The sudden outbreak and worldwide spread of the SARS-CoV-2 pandemic pushed the scientific community to find fast solutions to cope with the health emergency. COVID-19 complexity, in terms of clinical outcomes, severity, and response to therapy suggested the use of multifactorial strategies, characteristic of the network medicine, to approach the study of the pathobiology. Proteomics and interactomics especially allow to generate datasets that, reduced and represented in the forms of networks, can be analyzed with the tools of systems biology to unveil specific pathways central to virus\u2013human host interaction. Moreover, artificial intelligence tools can be implemented for the identification of druggable targets and drug repurposing. In this review article, we provide an overview of the results obtained so far, from a systems biology perspective, in the understanding of COVID-19 pathobiology and virus\u2013host interactions, and in the development of disease classifiers and tools for drug repurposing
Differential cross section analysis in kaon photoproduction using associated legendre polynomials
Angular distributions of differential cross sections from the latest CLAS
data sets \cite{bradford}, for the reaction have been analyzed using associated Legendre polynomials. This
analysis is based upon theoretical calculations in Ref. \cite{fasano} where all
sixteen observables in kaon photoproduction can be classified into four
Legendre classes. Each observable can be described by an expansion of
associated Legendre polynomial functions. One of the questions to be addressed
is how many associated Legendre polynomials are required to describe the data.
In this preliminary analysis, we used data models with different numbers of
associated Legendre polynomials. We then compared these models by calculating
posterior probabilities of the models. We found that the CLAS data set needs no
more than four associated Legendre polynomials to describe the differential
cross section data. In addition, we also show the extracted coefficients of the
best model.Comment: Talk given at APFB08, Depok, Indonesia, August, 19-23, 200
Ligand-Based Regulation of Dynamics and Reactivity of Hemoproteins
Hemoproteins include several heme-binding proteins with distinct structure and function. The presence of the heme group confers specific reactivity and spectroscopic properties to hemoproteins. In this review, we provide an overview of five families of hemoproteins in terms of dynamics and reactivity. First, we describe how ligands modulate cooperativity and reactivity in globins, such as myoglobin and hemoglobin. Second, we move on to another family of hemoproteins devoted to electron transport, such as cytochromes. Later, we consider heme-based reactivity in hemopexin, the main heme-scavenging protein. Then, we focus on heme-albumin, a chronosteric hemoprotein with peculiar spectroscopic and enzymatic properties. Eventually, we analyze the reactivity and dynamics of the most recently discovered family of hemoproteins, i.e., nitrobindins
- …