6,244 research outputs found

    NASA seat experiment and occupant responses

    Get PDF
    Results of the crash test of a remotely piloted transport aircraft instrumented to measure a NASA energy-absorbing transport seat are given. Human tolerance limits to acceleration and a dynamic response index model are discussed. It was found that the acceleration levels at the rear of the airplane were quite low and were below the stroking threshold of the NASA EA-seat. Therefore, dummies in the standard and EA-seat responded approximately the same. All longitudinal accelerations were quite low for the primary impact with very low forces measured in the lap belts. The vertical (spineward) acceleration levels measured in the dummies were also relatively low and very survivable from an impact tolerance standpoint. The pilot with an 18 G peak acceleration received by far the highest vertical acceleration and could have possibly received slight spinal injury

    Development of an energy-absorbing passenger seat for a transport aircraft

    Get PDF
    Commercial air transport passenger safety and survivability, in the event of an impact-survivable crash, are subjects receiving increased technical focus/study by the aviation community. A B-720 aircraft, highly instrumented, and remotely controlled from the ground by a pilot in a simulated cockpit, was crashed on a specially prepared gravel covered impact site. The aircraft was impacted under controlled conditions in an air-to-ground gear-up mode, at a nominal speed of 150 knots and 4-1/2 deg glide slope. Data from a number of on board, crash worthiness experiments provided valuable information related to structural loads/failure modes, antimisting kerosene fuel, passenger and attendant restraint systems and energy absorbing seats. The development of an energy absorbing (EA) seat accomplished through innovative modification of a typical modern standard commercial aviation transport, three passenger seat is described

    Impact data from a transport aircraft during a controlled impact demonstration

    Get PDF
    On December 1, 1984, the FAA and NASA conducted a remotely piloted air-to-ground crash test of a Boeing 720 transport aircraft instrumented to measure crash loads of the structure and the anthropomorphic dummy passengers. Over 330 time histories of accelerations and loads collected during the Full-Scale Transport Controlled Impact Demonstration (CID) for the 1-sec period after initial impact are presented. Although a symmetric 1 deg. nose-up attitude with a 17 ft/sec sink rate was planned, the plane was yawed and rolled 13 deg. at initial (left-wing) impact. The first fuselage impact occurred near the nose wheel well with the nose pitched down 2.5 deg. Peak normal (vertical) floor accelerations were highest in the cockpit and forward cabin near the nose wheel well and were approximately 14G. The remaining cabin floor received normal acceleration peaks of 7G or less. The peak longitudinal floor accelerations showed a similar distribution, with the highest (7G) in the cockpit and forward cabin, decreasing to 4G or less toward the rear. Peak transverse floor accelerations ranged from about 5G in the cockpit to 1G in the aft fuselage

    Experimental and analytical determination of characteristics affecting light aircraft landing-gear dynamics

    Get PDF
    An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface

    Analysis of the Space Shuttle Orbiter skin panels under simulated hydrodynamic loads

    Get PDF
    The Space Shuttle orbiter skin panels were analyzed under pressure loads simulating hydrodynamic loads to determine their capability to sustain a potential ditching and to determine pressures that typically would produce failures. Two Dynamic Crash Analysis of Structures (DYCAST) finite element models were used. One model was used to represent skin panels (bays) in the center body, while a second model was used to analyze a fuselage bay in the wing region of the orbiter. From an assessment of the DYCAST nonlinear computer results, it is concluded that the probability is extremely high that most, if not all, of the lower skin panels would rupture under ditching conditions. Extremely high pressure loads which are produced under hydrodynamic planning conditions far exceed the very low predicted failure pressures for the skin panels. Consequently, a ditching of the orbiter is not considered to have a high probability of success and should not be considered a means of emergency landing unless no other option exists

    An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    Get PDF
    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models

    Vertical drop test of a transport fuselage section located aft of the wing

    Get PDF
    A 12-foot long Boeing 707 aft fuselage section with a tapering cross section was drop tested at the NASA Langley Research Center to measure structural, seat, and occupant response to vertical crash laods and to provide data for nonlinear finite element modeling. This was the final test in a series of three different transport fuselage sections tested under identical conditions. The test parameters at impact were: 20 ft/s velocity, and zero pitch, roll, and yaw. In addition, the test was an operational shock test of the data acquisition system used for the Controlled Impact Demonstration (CID) of a remotely piloted Boeing 720 that was crash tested at NASA Ames Dryden Flight Research Facility on December 1, 1984. Post-test measurements of the crush showed that the front of the section (with larger diameter) crushed vertically approximately 14 inches while the rear crushed 18 inches. Analysis of the data traces indicate the maximum peak normal (vertical) accelerations at the bottom of the frames were approximately 109 G at body station 1040 and 64 G at body station 1120. The peak floor acceleration varied from 14 G near the wall to 25 G near the center where high frequency oscillations of the floor were evident. The peak anthropomorphic dummy pelvis normal (vertical) acceleration was 19 G's

    Soft Soil Impact Testing and Simulation of Aerospace Structures

    Get PDF
    In June 2007, a 38-ft/s vertical drop test of a 5-ft-diameter, 5-ft-long composite fuselage section that was retrofitted with a novel composite honeycomb Deployable Energy Absorber (DEA) was conducted onto unpacked sand. This test was one of a series of tests to evaluate the multi-terrain capabilities of the DEA and to generate test data for model validation. During the test, the DEA crushed approximately 6-in. and left craters in the sand of depths ranging from 7.5- to 9-in. A finite element model of the fuselage section with DEA was developed for execution in LS-DYNA, a commercial nonlinear explicit transient dynamic code. Pre-test predictions were generated in which the sand was represented initially as a crushable foam material MAT_CRUSHABLE_FOAM (Mat 63). Following the drop test, a series of hemispherical penetrometer tests were conducted to assist in soil characterization. The penetrometer weighed 20-lb and was instrumented with a tri-axial accelerometer. Drop tests were performed at 16-ft/s and crater depths were measured. The penetrometer drop tests were simulated as a means for developing a more representative soil model based on a soil and foam material definition MAT_SOIL_AND FOAM (Mat 5) in LS-DYNA. The model of the fuselage with DEA was reexecuted using the updated soil model and test-analysis correlations are presented

    Results from tests of three prototype general aviation seats

    Get PDF
    Three types of energy absorbing general aviation seats were dynamically tested and evaluated for crash load attenuation. On the basis of the static and dynamic test results, it was recommended that the tubular frame seats be redesigned to initiate stroking at approximately 12 G's rather than the 20 to 25 G range. Lower density foam was recommended for the foam wedge passenger seat

    Simulating the Response of a Composite Honeycomb Energy Absorber

    Get PDF
    This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented
    corecore