12 research outputs found

    Characterization of high temperature mechanical properties using laser ultrasound

    Full text link
    Mechanical properties are controlled to a large degree by defect structures such as dislocations and grain boundaries. These microstructural features involve a perturbation of the perfect crystal lattice (i.e. strain fields). Viewed in this context, high frequency strain waves (i.e. ultrasound) provide a natural choice to study microstructure mediated mechanical properties. In this presentation we use laser ultrasound to probe mechanical properties of materials. This approach utilizes lasers to excite and detect ultrasonic waves, and as a consequence has unique advantages over other methods—it is noncontacting, requires no couplant or invasive sample preparation (other than that used in metallurgical analysis), and has the demonstrated capability to probe microstructure on a micron scale. Laser techniques are highly reproducible enabling sophisticated, microstructurally informed data analysis. Since light is being used for generation and detection of the ultrasonic wave, the specimen being examined is not mechanically coupled to the transducer. As a result, laser ultrasound can be carried out remotely, an especially attractive characteristic for in situ measurements in severe environments. Several examples involving laser ultrasound to measure mechanical properties in high temperature environments will be presented. Emphasis will be place on understanding the role of grain microstructure

    Analysis of Bloch formalism in undamped and damped periodic structures

    Get PDF
    Bloch analysis was originally developed by Felix Bloch to solve Schrödinger's equation for the electron wave function in a periodic potential field, such as that found in a pristine crystalline solid. His method has since been adapted to study elastic wave propagation in periodic structures. The absence of a rigorous mathematical analysis of the approach, as applied to periodic structures, has resulted in mistreatment of internal forces and misapplication to nonlinear media. In this thesis, we detail a mathematical basis for Bloch analysis and thereby shed important light on the proper application of the technique. We show conclusively that translational invariance is not a proper justification for invoking the existence of a "propagation constant," and that in nonlinear media this results in a flawed analysis. Next, we propose a general framework for applying Bloch analysis in damped systems and investigate the effect of damping on dispersion curves. In the context of Schrödinger's equation, damping is absent and energy is conserved. In the damped setting, application of Bloch analysis is not straight-forward and requires additional considerations in order to obtain valid results. Results are presented in which the approach is applied to example structures. These results reveal that damping may introduce wavenumber band gaps and bending of dispersion curves such that two or more temporal frequencies exist for each dispersion curve and wavenumber. We close the thesis by deriving conditions which predict the number of wavevectors at each frequency in a dispersion relation. This has important implications for the number of nearest neighbor interactions that must be included in a model in order to obtain dispersion predictions which match experiment.PhDCommittee Chair: Michael J. Leamy; Committee Member: Hamid Garmestani; Committee Member: Massimo Ruzzene; Committee Member: Nader Sadegh; Committee Member: Samuel Graha

    Number of Wavevectors for Each Frequency in a Periodic Structure

    No full text

    Acoustic nonreciprocity in Coriolis mean flow systems

    No full text

    Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    No full text
    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of in-service degradation. Examples include composite density, distribution of porosity, fiber-matrix bond character, uniformity of weave, physical damage, and joint quality at interface bonds
    corecore