2 research outputs found

    Non-unit protection method for MMC-HVDC grids based on selective drop rate of voltage traveling waves

    No full text
    Fast, sensitive, and selective protection principles are one of the major challenges in the feasibility of modular multi-terminal (MMC) high voltage direct current (HVDC) grids. Rate of change of voltage (ROCOV) and transient-based solutions are the traditional and widely accepted protection principles. Despite the speed and practicality of these solutions, they generally suffer from sensitivity and selectivity issues, particularly when dealing with high-resistance faults and low-size current limiting inductors (CLIs). To improve upon these methods, this paper proposes a new primary protection method that utilizes a selective drop rate of fault-generated voltage traveling waves (TW) to detect internal DC line faults. This is achieved by a comprehensive analysis of the line-mode fault-generated voltage (LFGV) under various internal and external fault scenarios. As the key fault characteristics, the proposed method exploits the minimum points of initial LFGV and the corresponding time to form the basis of the proposed protection method. The effectiveness of this approach is evaluated using a four-terminal MMC-HVDC grid in PSCAD/EMTDC. Compared to ROCOV and transient-based solutions, the proposed method identifies internal faults up to 1250 Ω with fast response, while maintaining its practicality and independence to CLI size

    Analytical Overvoltage and Power-Sharing Control Method for Photovoltaic-Based Low-Voltage Islanded Microgrid

    No full text
    Overvoltage instability is a growing concern in a standalone low-voltage (LV) microgrid (MG) with non-dispatchable intermittent renewable energies such as residential and commercial photovoltaic generators (PVGs). Several overvoltage controllers used in PV arrays have adopted the concept of standard deviation from the maximum power point (MPP) to curtail the generated power. However, these solutions lack presenting analytical expression for the MPP deviation size, settings tuning independent of the MG’s/PV’s characteristics, scalability, and accurate power-sharing in the same control structure. To overcome these limitations, this paper proposes a new analytical MPP tracking (MPPT)-based overvoltage and power-sharing control method using the series equivalent resistance of the PV module model. By applying this analytical expression, the size of the PV array voltage shift to the right-hand side of the MPP is obtained in terms of overvoltage level, while all PVGs proportionally curtail the active power output. The effectiveness of the proposed methodology is shown in various low-demand and high-PV generation cases through a real time digital simulator (RTDS) platform. In addition to the fast and accurate performance, the presented method benefits from the straightforward and communication-free structure as it solely exploits the point of common coupling (PCC) voltage. Also, the method’s threshold does not require re- tuning after MG restructure, ensuring scalability. Without relying on other microgrid facilities, the proposed methodology is accordingly an effective solution for practical PV-based LV MGs
    corecore