7 research outputs found

    THE ESRF FROM 1988 TO 2018, 30 YEARS OF INNOVATION AND OPERATION

    No full text
    International audienceIn 1988, eleven European countries joined forces to build the European Synchrotron Facility in Grenoble [France]. The ESRF was the first third-generation light source worldwide. After 30 years of innovation and user operation, the present storage ring was shut down to leave room for a new and brighter source. This paper describes the evolution of the facility from its origin to the Ex-tremely Bright Source (EBS). Firstly, the operational aspects including reliability and beam modes are consid-ered. This is followed by the presentation of the progress of lattice and the implementation of top-up. Finally, the development of the radio frequency and vacuum systems are discussed. To conclude, the lessons learned from 30 years operation are summarized, especially in view of EBS

    ESRF-EBS lattice model with canted beamlines

    No full text
    International audienceThe ESRF Extremely Brilliant Source (ESRF-EBS) lattice model is updated to include three canted beamlines. The cells are modified where necessary to include 3-Pole Wiggler (3PW), 2-Pole Wiggler (2PW) and Short Bending Magnet (SBM) sources. Several lattices are obtained for the different stages that will bring from commissioning to operation with users. A scheme for tune modification keeping key optics knobs unchanged is proposed

    Le rayonnement synchrotron, une source de lumière dédiée à la recherche

    No full text
    Les électrons relativistes qui circulent dans les accélérateurs de particules produisent un rayonnement intense. Ce rayonnement synchrotron couvre un domaine en énergie allant des ondes millimétriques aux rayons X durs avec une brillance exceptionnelle, des polarisations linéaires ou circulaires, et une structure temporelle exploitable. En France, deux centres de ce type sont enfonctionnement [1] : l'Éuropean Synchrotron Radiation Facility (ESRF), situé à Grenoble, et SOLEIL(a

    Comparison of Optics Measurement Methods in ESRF

    No full text
    The N-BPM and the Amplitude methods, which are used in the LHC for beam optics measurement, were applied to the ESRF storage ring. We compare the results to the Orbit Response Matrix (ORM) method that is routinely used in the ESRF. These techniques are conceptually different since the ORM is based on the orbit response upon strength variation of steering magnets while the LHC techniques rely on the harmonic analysis of turn-by-turn position excited by a kicker or an AC dipole. Finally, we compare these methods and show the differences in their performance in the ESRF environment

    Thermal Stability of the New ESRF Extremely Brilliant Source

    No full text
    International audienceIn the frame of the Extremely Brilliant Source project (EBS), studies dedicated to disturbances have been more intensively investigated. Engineering instabilities have two origins: mechanical and thermal. Major thermal issues are: - air conditioning presents a temperature ramp up of 2°C along the sector - storage ring requires a warm up period of 4 days for reaching a stable orbit These effects have been observed and corrected for 20 years. With EBS requirements, we need to identify these thermal effects in order to reduce the disturbances, thus improving more systematically the source stability. The study is lead by the comparison between the present and the new thermal system. To do so, it is necessary to evaluate the heat balance in this system, as well as to identify the thermal time constant of each component. FEA models have been performed to reveal sensitivity of these thermal issues. A full scale mock-up cell equipped with a prototype girder is measured with power cables inside. A FEA model was also developed for the present storage ring to analyse the air stream. Although investigations have already been developed, some others remain to be achieved by the end of 2016

    Operation Improvements and Emittance Reduction of the ESRF Booster

    No full text
    International audienceThe ESRF storage ring will be replaced by the Extremely Brilliant Source (EBS) in 2020 and the equilibrium emittance will decrease from the present 4 nmrad to 134 pmrad. The current injector system, composed by a linac and a synchrotron booster, will be used to inject into the new storage ring. To increase the injection efficiency in the new storage ring, three methods to reduce the horizontal emittance of the booster have been considered and tested. This paper presents the studies and achievements in terms of operation improvements and emittance reduction
    corecore