2 research outputs found
Cry-Based Classification of Healthy and Sick Infants Using Adapted Boosting Mixture Learning Method for Gaussian Mixture Models
We make use of information inside infant’s cry signal in order to identify the infant’s psychological condition. Gaussian mixture models (GMMs) are applied to distinguish between healthy full-term and premature infants, and those with specific medical problems available in our cry database. Cry pattern for each pathological condition is created by using adapted boosting mixture learning (BML) method to estimate mixture model parameters. In the first experiment, test results demonstrate that the introduced adapted BML method for learning of GMMs has a better performance than conventional EM-based reestimation algorithm as a reference system in multipathological classification task. This newborn cry-based diagnostic system (NCDS) extracted Mel-frequency cepstral coefficients (MFCCs) as a feature vector for cry patterns of newborn infants. In binary classification experiment, the system discriminated a test infant’s cry signal into one of two groups, namely, healthy and pathological based on MFCCs. The binary classifier achieved a true positive rate of 80.77% and a true negative rate of 86.96% which show the ability of the system to correctly identify healthy and diseased infants, respectively
Cry-based infant pathology classification using GMMs
AbstractTraditional studies of infant cry signals focus more on non-pathology-based classification of infants. In this paper, we introduce a noninvasive health care system that performs acoustic analysis of unclean noisy infant cry signals to extract and measure certain cry characteristics quantitatively and classify healthy and sick newborn infants according to only their cries. In the conduct of this newborn cry-based diagnostic system, the dynamic MFCC features along with static Mel-Frequency Cepstral Coefficients (MFCCs) are selected and extracted for both expiratory and inspiratory cry vocalizations to produce a discriminative and informative feature vector. Next, we create a unique cry pattern for each cry vocalization type and pathological condition by introducing a novel idea using the Boosting Mixture Learning (BML) method to derive either healthy or pathology subclass models separately from the Gaussian Mixture Model-Universal Background Model (GMM-UBM). Our newborn cry-based diagnostic system (NCDS) has a hierarchical scheme that is a treelike combination of individual classifiers. Moreover, a score-level fusion of the proposed expiratory and inspiratory cry-based subsystems is performed to make a more reliable decision. The experimental results indicate that the adapted BML method has lower error rates than the Bayesian approach or the maximum a posteriori probability (MAP) adaptation approach when considered as a reference method