279 research outputs found

    The dependence of intrinsic alignment of galaxies on wavelength using KiDS and GAMA

    Get PDF
    The outer regions of galaxies are more susceptible to the tidal interactions that lead to intrinsic alignments of galaxies. The resulting alignment signal may therefore depend on the passband if the colours of galaxies vary spatially. To quantify this, we measured the shapes of galaxies with spectroscopic redshifts from the GAMA survey using deep gri imaging data from the KiloDegree Survey. The performance of the moment-based shape measurement algorithm DEIMOS was assessed using dedicated image simulations, which showed that the ellipticities could be determined with an accuracy better than 1% in all bands. Additional tests for potential systematic errors did not reveal any issues. We measure a significant difference of the alignment signal between the g, r and i-band observations. This difference exceeds the amplitude of the linear alignment model on scales below 2 Mpc h⁻¹. Separating the sample into central/satellite and red/blue galaxies, we find that the difference is dominated by red satellite galaxies

    Longitudinal exchange: an alternative strategy towards quantification of dynamics parameters in ZZ exchange spectroscopy

    Get PDF
    Longitudinal exchange experiments facilitate the quantification of the rates of interconversion between the exchanging species, along with their longitudinal relaxation rates, by analyzing the time-dependence of direct correlation and exchange cross peaks. Here we present a simple and robust alternative to this strategy, which is based on the combination of two complementary experiments, one with and one without resolving exchange cross peaks. We show that by combining the two data sets systematic errors that are caused by differential line-broadening of the exchanging species are avoided and reliable quantification of kinetic and relaxation parameters in the presence of additional conformational exchange on the ms–μs time scale is possible. The strategy is applied to a bistable DNA oligomer that displays different line-broadening in the two exchanging species

    Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites

    Get PDF
    Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur

    Structural studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of RORγt inhibitors

    Get PDF
    The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by ab initio calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists

    In-cell NMR in E. coli to Monitor Maturation Steps of hSOD1

    Get PDF
    In-cell NMR allows characterizing the folding state of a protein as well as posttranslational events at molecular level, in the cellular context. Here, the initial maturation steps of human copper, zinc superoxide dismutase 1 are characterized in the E. coli cytoplasm by in-cell NMR: from the apo protein, which is partially unfolded, to the zinc binding which causes its final quaternary structure. The protein selectively binds only one zinc ion, whereas in vitro also the copper site binds a non-physiological zinc ion. However, no intramolecular disulfide bridge formation occurs, nor copper uptake, suggesting the need of a specific chaperone for those purposes

    NMR Analysis of the Dynamic Exchange of the NS2B Cofactor between Open and Closed Conformations of the West Nile Virus NS2B-NS3 Protease

    Get PDF
    Dengue and West Nile virus infections put an estimated 2.5 billion people at risk. Neither drugs nor vaccines are currently available against these diseases. The non-structural protein NS3 is a protease that, together with the cofactor NS2B, is essential for viral maturation. The NS2B-NS3 proteases of dengue and West Nile viruses are highly homologous and present promising drug targets. Crystal structures of the West Nile virus protease with and without bound inhibitor revealed large structural differences in NS2B, while no crystal structure of the dengue virus protease could be determined with a bound inhibitor. We investigated the structural change in solution and found that the C-terminal segment (CTS) of the NS2B cofactor is prone to dissociation from NS3. In the case of the West Nile virus protease, the CTS of NS2B is mostly associated with NS3, especially in the presence of inhibitors. In the case of the dengue virus protease and in the absence of inhibitors, the CTS of NS2B is mostly dissociated from NS3. Finding drug candidates to inhibit the association of the NS2B cofactor may thus be easier for the dengue virus protease

    Insights into Protein Aggregation by NMR Characterization of Insoluble SH3 Mutants Solubilized in Salt-Free Water

    Get PDF
    Protein aggregation in vivo has been extensively associated with a large spectrum of human diseases. On the other hand, mechanistic insights into protein aggregation in vitro were incomplete due to the inability in solubilizing insoluble proteins for high-resolution biophysical investigations. However, a new avenue may be opened up by our recent discovery that previously-thought insoluble proteins can in fact be solubilized in salt-free water. Here we use this approach to study the NMR structural and dynamic properties of an insoluble SH3 mutant with a naturally-occurring insertion of Val22 at the tip of the diverging turn. The obtained results reveal: 1) regardless of whether the residue is Val, Ala, Asp or Arg, the insertion will render the first hNck2 SH3 domain to be insoluble in buffers. Nevertheless, all four mutants could be solubilized in salt-free water and appear to be largely unfolded as evident from their CD and NMR HSQC spectra. 2) Comparison of the chemical shift deviations reveals that while in V22-SH3 the second helical region is similarly populated as in the wild-type SH3 at pH 2.0, the first helical region is largely unformed. 3) In V22-SH3, many non-native medium-range NOEs manifest to define non-native helical conformations. In the meanwhile a small group of native-like long-range NOEs still persists, indicating the existence of a rudimentary native-like tertiary topology. 4) Although overall, V22-SH3 has significantly increased backbone motions on the ps-ns time scale, some regions still own restricted backbone motions as revealed by analyzing 15N relaxation data. Our study not only leads to the establishment of the first high-resolution structural and dynamic picture for an insoluble protein, but also shed more light on the molecular events for the nonhierarchical folding mechanism. Furthermore, a general mechanism is also proposed for in vivo protein aggregation triggered by the genetic mutation and posttranslational modification

    Probing the urea dependence of residual structure in denatured human α-lactalbumin

    Get PDF
    Backbone 15N relaxation parameters and 15N–1HN residual dipolar couplings (RDCs) have been measured for a variant of human α-lactalbumin (α-LA) in 4, 6, 8 and 10 M urea. In the α-LA variant, the eight cysteine residues in the protein have been replaced by alanines (all-Ala α-LA). This protein is a partially folded molten globule at pH 2 and has been shown previously to unfold in a stepwise non-cooperative manner on the addition of urea. 15N R2 values in some regions of all-Ala α-LA show significant exchange broadening which is reduced as the urea concentration is increased. Experimental RDC data are compared with RDCs predicted from a statistical coil model and with bulkiness, average area buried upon folding and hydrophobicity profiles in order to identify regions of non-random structure. Residues in the regions corresponding to the B, D and C-terminal 310 helices in native α-LA show R2 values and RDC data consistent with some non-random structural propensities even at high urea concentrations. Indeed, for residues 101–106 the residual structure persists in 10 M urea and the RDC data suggest that this might include the formation of a turn-like structure. The data presented here allow a detailed characterization of the non-cooperative unfolding of all-Ala α-LA at higher concentrations of denaturant and complement previous studies which focused on structural features of the molten globule which is populated at lower concentrations of denaturant

    NMR Derived Model of GTPase Effector Domain (GED) Self Association: Relevance to Dynamin Assembly

    Get PDF
    Self-association of dynamin to form spiral structures around lipidic vesicles during endocytosis is largely mediated by its ‘coiled coil’ GTPase Effector Domain (GED), which, in vitro, self-associates into huge helical assemblies. Residue-level structural characterizations of these assemblies and understanding the process of association have remained a challenge. It is also impossible to get folded monomers in the solution phase. In this context, we have developed here a strategy to probe the self-association of GED by first dissociating the assembly using Dimethyl Sulfoxide (DMSO) and then systematically monitoring the refolding into helix and concomitant re-association using NMR spectroscopy, as DMSO concentration is progressively reduced. The short segment, Arg109 - Met116, acts as the nucleation site for helix formation and self-association. Hydrophobic and complementary charge interactions on the surfaces drive self-association, as the helices elongate in both the directions resulting in an antiparallel stack. A small N-terminal segment remains floppy in the assembly. Following these and other published results on inter-domain interactions, we have proposed a plausible mode of dynamin self assembly

    Mesodynamics in the SARS nucleocapsid measured by NMR field cycling

    Get PDF
    Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R1 at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire β-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions
    corecore