6,908 research outputs found

    PyFR: An Open Source Framework for Solving Advection-Diffusion Type Problems on Streaming Architectures using the Flux Reconstruction Approach

    Get PDF
    High-order numerical methods for unstructured grids combine the superior accuracy of high-order spectral or finite difference methods with the geometric flexibility of low-order finite volume or finite element schemes. The Flux Reconstruction (FR) approach unifies various high-order schemes for unstructured grids within a single framework. Additionally, the FR approach exhibits a significant degree of element locality, and is thus able to run efficiently on modern streaming architectures, such as Graphical Processing Units (GPUs). The aforementioned properties of FR mean it offers a promising route to performing affordable, and hence industrially relevant, scale-resolving simulations of hitherto intractable unsteady flows within the vicinity of real-world engineering geometries. In this paper we present PyFR, an open-source Python based framework for solving advection-diffusion type problems on streaming architectures using the FR approach. The framework is designed to solve a range of governing systems on mixed unstructured grids containing various element types. It is also designed to target a range of hardware platforms via use of an in-built domain specific language based on the Mako templating engine. The current release of PyFR is able to solve the compressible Euler and Navier-Stokes equations on grids of quadrilateral and triangular elements in two dimensions, and hexahedral elements in three dimensions, targeting clusters of CPUs, and NVIDIA GPUs. Results are presented for various benchmark flow problems, single-node performance is discussed, and scalability of the code is demonstrated on up to 104 NVIDIA M2090 GPUs. The software is freely available under a 3-Clause New Style BSD license (see www.pyfr.org)

    Measurement of the differential cross-section of B + meson production in pp collisions at √s=7 TeV at ATLAS

    Get PDF
    The production cross-section of B + mesons is measured as a function of transverse momentum p T and rapidity y in proton-proton collisions at centre-of-mass energy s√=7 TeV, using 2.4 fb−1 of data recorded with the ATLAS detector at the Large Hadron Collider. The differential production cross-sections, determined in the range 9 GeV < p T < 120 GeV and |y| < 2.25, are compared to next-to-leading-order theoretical predictions

    Dynamics of isolated-photon plus jet production in pp collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The dynamics of isolated-photon plus jet production in pp collisions at a centre-of-mass energy of 7 TeV has been studied with the ATLAS detector at the LHC using an integrated luminosity of 37 pb−1. Measurements of isolated-photon plus jet bin-averaged cross sections are presented as functions of photon transverse energy, jet transverse momentum and jet rapidity. In addition, the bin-averaged cross sections as functions of the difference between the azimuthal angles of the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass frame have been measured. Next-to-leading-order QCD calculations are compared to the measurements and provide a good description of the data, except for the case of the azimuthal opening angle

    Measurement of jet shapes in top-quark pair events at √s =7 TeV using the ATLAS detector

    Get PDF
    A measurement of jet shapes in top-quark pair events using 1.8 fb−1 of √s=7 TeV pp collision data recorded by the ATLAS detector at the LHC is presented. Samples of top-quark pair events are selected in both the single-lepton and dilepton final states. The differential and integrated shapes of the jets initiated by bottom-quarks from the top-quark decays are compared with those of the jets originated by light-quarks from the hadronic W-boson decays W→qq¯′ in the single-lepton channel. The light-quark jets are found to have a narrower distribution of the momentum flow inside the jet area than b-quark jets

    Measurement of the production cross section of jets in association with a Z boson in pp collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    Measurements of the production of jets of particles in association with a Z boson in pp collisions at s√=7 TeV are presented, using data corresponding to an integrated luminosity of 4.6 fb−1 collected by the ATLAS experiment at the Large Hadron Collider. Inclusive and differential jet cross sections in Z events, with Z decaying into electron or muon pairs, are measured for jets with transverse momentum p T > 30 GeV and rapidity |y| < 4.4. The results are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements supplemented by parton showers

    Measurement of the azimuthal angle dependence of inclusive jet yields in Pb+Pb collisions at √sNN=2.76  TeV with the ATLAS detector

    Get PDF
    Measurements of the variation of inclusive jet suppression as a function of relative azimuthal angle, Δϕ, with respect to the elliptic event plane provide insight into the path-length dependence of jet quenching. ATLAS has measured the Δϕ dependence of jet yields in 0.14  nb-1 of √sNN=2.76  TeV Pb+Pb collisions at the LHC for jet transverse momenta pT>45  GeV in different collision centrality bins using an underlying event subtraction procedure that accounts for elliptic flow. The variation of the jet yield with Δϕ was characterized by the parameter, v2jet, and the ratio of out-of-plane (Δϕ∼π/2) to in-plane (Δϕ∼0) yields. Nonzero v2jet values were measured in all centrality bins for pT<160  GeV. The jet yields are observed to vary by as much as 20% between in-plane and out-of-plane directions

    Measurement of the production cross section of prompt J/ψ mesons in association with a W± boson in pp collisions at p s = 7 TeV with the ATLAS detector

    Get PDF
    The process pp → W±J/ψ provides a powerful probe of the production mechanism of charmonium in hadronic collisions, and is also sensitive to multiple parton interactions in the colliding protons. Using the 2011 ATLAS dataset of 4.5 fb-1 of p s = 7TeV pp collisions at the LHC, the first observation is made of the production of W± + prompt J/ events in hadronic collisions, using W± → μ and J/ψ → μ+μ-. A yield of 27.4±7.5 -6.5 W± + prompt J/ψ events is observed, with a statistical significance of 5.1. The production rate as a ratio to the inclusive W± boson production rate is measured, and the double parton scattering contribution to the cross section is estimated

    Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in √s=8 TeV pp collisions with the ATLAS detector

    Get PDF
    The results of a search for pair production of supersymmetric partners of the Standard Model third-generation quarks are reported. This search uses 20.1 fb−1 of pp collisions at √s=8 TeV collected by the ATLAS experiment at the Large Hadron Collider. The lightest bottom and top squarks ( b˜1 and t˜1 respectively) are searched for in a final state with large missing transverse momentum and two jets identified as originating from b-quarks. No excess of events above the expected level of Standard Model background is found. The results are used to set upper limits on the visible cross section for processes beyond the Standard Model. Exclusion limits at the 95 % confidence level on the masses of the third-generation squarks are derived in phenomenological supersymmetric R-parity-conserving models in which either the bottom or the top squark is the lightest squark. The b˜1 is assumed to decay via b˜1→b∼χ01 and the t˜1 via t˜1→b∼χ1± , with undetectable products of the subsequent decay of the ∼χ1± due to the small mass splitting between the ∼χ1± and the ∼χ01

    Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at √s=8  TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3  fb−1 of integrated luminosity at s√=8  TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions

    Measurement of the electroweak production of dijets in association with a Z-boson and distributions sensitive to vector boson fusion in proton-proton collisions at √s= 8 TeV using the ATLAS detector

    Get PDF
    Measurements of fiducial cross sections for the electroweak production of two jets in association with a Z-boson are presented. The measurements are performed using 20.3 fb−1 of proton-proton collision data collected at a centre-of-mass energy of s√ = 8 TeV by the ATLAS experiment at the Large Hadron Collider. The electroweak component is extracted by a fit to the dijet invariant mass distribution in a fiducial region chosen to enhance the electroweak contribution over the dominant background in which the jets are produced via the strong interaction. The electroweak cross sections measured in two fiducial regions are in good agreement with the Standard Model expectations and the background-only hypothesis is rejected with significance above the 5σ level. The electroweak process includes the vector boson fusion production of a Z-boson and the data are used to place limits on anomalous triple gauge boson couplings. In addition, measurements of cross sections and differential distributions for inclusive Z-boson-plus-dijet production are performed in five fiducial regions, each with different sensitivity to the electroweak contribution. The results are corrected for detector effects and compared to predictions from the Sherpa and Powheg event generators
    corecore