8,548 research outputs found
Motor brush wear measured with strain gages
Balanced bridge circuit, supplied with low-voltage direct current and connected to a readout device, measures remaining brush material, rate of brush wear, armature runout, and brush signature
Charging and Subsequent Dissipation of a Rover Wheel in the Lunar Polar Regions
As a roving vehicle moves along the lunar surface, electric charge will build up through tribo-charging. This charge collected by the roving object will have a dissipative path to either the surface or the ambient plasma, depending upon which path is most conductive. At the lunar terminator region and into nightside regions, the surface is very cold and becomes a very poor conductor. leaving the plasma as the dominant remediating current for dissipation. However, within lunar craters, even plasma currents become substantially reduced which then greatly increases electric 'dissipation times, This work will involve the advancement of the stepping astronaut charge model, by considering the charging and plasma dissipation of a rolling rover wheel, The objective of this work is to determine the nature of charging and discharging for a rover wheel as it rolls along the cold, plasma-starved lunar polar regions. The rotating wheel accumulates charge via contact electrification (tribo-charging) with the lunar regolith. This tribo-charging is dependent on the composition of the objects in contact, with insulators and conductors charging differently. Given the environmental plasma in the region, we then determine the dissipation time for the wheel to bleed off its excess charge into the surrounding plasma. A model of the rover wheel rotating continuously over a surface regolith within a polar crater has been applied. The environmental plasma has been described previously. We define a new tribo-charging term specifically for the rotating system, with charge levels defined as a function of the wheel size, area in contact with the regolith, regolith particle size distribution, as well as the velocity at which the wheel is turning. We recognize that as charged dust accumulates and sticks to the wheel, this behaves effectively as a new current. Hence, the overall charging of the system should no longer vary linearly. and begin to show signs of saturation, We are devising a dust current term to model this charge-limiting effect, and will present the results in discussion
Ringing After a High-Energy Collision: Ambipolar Oscillations During Impact Plasma Expansion
High-velocity impacts on the Moon and other airless bodies deliver energy and material to the lunar surface and exosphere. The target and i mpactor material may become vaporized and ionized to form a collision al plasma that expands outward and eventually becomes collisionless. In the present work, kinetic simulations of the later collision less stage of impact plasma expansion are performed. Attention is paid to characterizing "ambipolar oscillations" in which thermodynamic distur bances propagate outward to generate "ringing" within the expanding e lectron cloud, which could radiate an electromagnetic signature of lo cal plasma conditions. The process is not unlike a beam-plasma intera ction, with the perturbing electron population in the present case ac ting as a highly thermal "beam" that resonates along the expanding de nsity gradient. Understanding the electromagnetic aspects of impact p lasma expansion could provide insight into the lasting effects of nat ural, impact-generated currents on airless surfaces and charging haza rds to human exploration infrastructure and instrumentation
Mathematical Modeling of Diffusion of a Hydrophilic Ionic Fertilizer in Plant Cuticles: Surfactant and Hygroscopic Effects
The agricultural industry requires improved efficacy of sprays being applied to crops and weeds to reduce their environmental impact and increase financial returns. One way to improve efficacy is by enhancing foliar penetration. The plant leaf cuticle is the most significant barrier to agrochemical diffusion within the leaf. The importance of a mechanistic mathematical model has been noted previously in the literature, as each penetration experiment is dictated by its specific parameters, namely plant species, environmental conditions such as relative humidity and spray formulation including adjuvant addition. A mechanistic mathematical model has been previously developed by the authors, focusing on plant cuticle diffusion of calcium chloride through tomato fruit cuticles including pore swelling, ion binding and evaporation, along with the ability to vary the active ingredient concentration and type, relative humidity and plant species. Here we further develop this model to include adjuvant effects as well as the hygroscopic nature of deliquescent ionic solutions with evaporation on the cuticle surface. These modifications to a penetration and evaporation model provide a novel addition to the literature and allow the model to be applied to many types of evaporating ionic hygroscopic solutions on many types of substrates, not just plant cuticles. We validate our theoretical model results against appropriate experimental data, discuss key sensitivities and relate theoretical predictions to physical mechanisms. The important governing mechanisms influencing surfactant enhanced penetration of ionic active through plant cuticles were found to be aqueous pore radius, pore density, cuticle thickness and initial contact angle of the applied droplet; ion binding, relative humidity and evaporation including hygroscopic water absorption parameters for point of deliquescence. The sensitivity analysis indicated surfactants increase penetration by changing the point of deliquescence of a solution, which alters the water absorption and the initial contact angle, which alters the number of pores under the droplet. The results of the validation and sensitivity analysis imply that this model accounts for many of the mechanisms governing penetration in plant cuticles
Plasma Wake Simulations and Object Charging in a Shadowed Lunar Crater During a Solar Storm
Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a plasma wake that electrostatically diverts ions toward the crater floor and generates a surface potential that can reach kilovolts. In the present work kinetic plasma simulations are employed to investigate the morphology of a lunar crater wake during passage of a solar storm. Results are cast in terms of leading dimensionless ratios including the ion Mach number, ratio of crater depth to plasma Debye length, peak secondary electron yield, and electron temperature vs. electron impact energy at peak secondary yield. This small set of ratios allows generalization to a much wider range of scenarios. The kinetic simulation results are fed forward into an equivalent-circuit model of a roving astronaut. In very low-plasma-current environments triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, simulated ion fluxes are used to explore sputtering and implantation processes within an idealized crater. It is suggested that the physics of plasma mini-wakes formed in the vicinity of permanently shadowed topography may play a critical role in modulating the enigmatic spatial distribution of volatiles at the lunar poles
The Curious Question of Exercise-Induced Pulmonary Edema
The question of whether pulmonary edema develops during exercise on land is controversial. Yet, the development of pulmonary edema during swimming and diving is well established. This paper addresses the current controversies that exist in the field of exercise-induced pulmonary edema on land and with water immersion. It also discusses the mechanisms by which pulmonary edema can develop during land exercise, swimming, and diving and the current gaps in knowledge that exist. Finally, this paper discusses how these fields can continue to advance and the areas where clinical knowledge is lacking
Martian dust storms as a possible sink of atmospheric methane
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95377/1/grl22016.pd
Lunar Crater Mini-Wakes: Structure, Variability, and Volatiles
Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a regional plasma mini-wake. In the present work kinetic simulations are utilized to investigate how the most prominent structural aspects of a crater mini-wake are modulated during passage of a solar storm. In addition, the simulated particle fluxes are coupled into an equivalent-circuit model of a roving astronaut,. including triboelectric charging due to frictional contact with the lunar regolith, to characterize charging of the astronaut suit during the various stages of the storm. In some cases, triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, the present results suggest that wake structure plays a critical role in modulating the spatial distribution of volatiles at the lunar poles
Concerning the Charging of an Exploration Craft on and near a Small Asteroid
Introduction: An object immersed in an airless plasma environment will experience a natural process of surface charging in order to acheieve current balance, or zero net electric current to the object. It has been shown in recent computer simulations that the small-body plasma environment is very complex [1], considering effects of photoemission, topography, and formation of a plasma wake. For this work we consider an exploration craft (or astronaut) immersed within a plasma environment near an asteroid, which exhibits widely varying solar wind and photoelectric particle fluxes and continuously evolving illumination conditions. Objective: We aim to determine how an explo-ration craft or astronaut suit accumulates charge while located in the "nightside" asteroid wake where the particle fluxes are reduced, and in the dayside near-surface photoelectron sheath, by combining an object charging model [2] with kinetic simulations of a near-asteroid plasma environment [1]. We consider an astronaut floating near the asteroid while not in contact with the surface, as well as an astronaut moving along the surface using their hands/gloves to crawl along. Results: The modeling results suggest that remediation of triboelectric charge via accumulation of plasma currents is an important factor to consider when designing future NEA mission infrastructure, especially if repeated and frequent contact with the surface is planned. In shadowed regions such as the location shown in Fig. 1a, the plasma currents are so low (and the effective charge-remediation timescale so long, e.g. minutes to hours) that repeated contact with the surface tribocharges the glove in an uncontrollable fashion, as shown for two representative electron temperatures in Fig. 2a. The resulting buildup of significant negative charge would eventually initiate some other "current of last resort" [4] such as transport of positively-charged dust, field-emission from the glove, or significant alteration of environmental ion currents within the wake. In contrast, the few-meters-thick dayside photoelectron sheath in which the astronaut of Fig. 1b is immersed in is so rich in electrons (and hence so electrically conductive) that accumulated tribocharge dissipates almost instantaneously (e.g. in less than a ms) as shown in Fig. 2b. As our model astronaut orbits the NEA they would experience plasma currents and associated charge re-mediation times spanning many orders of magnitude, and the fusion between our numerical models provides a detailed understanding of the charging hazards possibly associated with contact-based NEA exploration
Conditions for one-dimensional supersonic flow of quantum gases
One can use transsonic Bose-Einstein condensates of alkali atoms to establish
the laboratory analog of the event horizon and to measure the acoustic version
of Hawking radiation. We determine the conditions for supersonic flow and the
Hawking temperature for realistic condensates on waveguides where an external
potential plays the role of a supersonic nozzle. The transition to supersonic
speed occurs at the potential maximum and the Hawking temperature is entirely
determined by the curvature of the potential
- …