1,590 research outputs found

    Recalculation of Proton Compton Scattering in Perturbative QCD

    Get PDF
    At very high energy and wide angles, Compton scattering on the proton (gamma p -> gamma p) is described by perturbative QCD. The perturbative QCD calculation has been performed several times previously, at leading twist and at leading order in alpha_s, with mutually inconsistent results, even when the same light-cone distribution amplitudes have been employed. We have recalculated the helicity amplitudes for this process, using contour deformations to evaluate the singular integrals over the light-cone momentum fractions. We do not obtain complete agreement with any previous result. Our results are closest to those of the most recent previous computation, differing significantly for just one of the three independent helicity amplitudes, and only for backward scattering angles. We present results for the unpolarized cross section, and for three different polarization asymmetries. We compare the perturbative QCD predictions for these observables with those of the handbag and diquark models. In order to reduce uncertainties associated with alpha_s and the three-quark wave function normalization, we have normalized the Compton cross section using the proton elastic form factor. The theoretical predictions for this ratio are about an order of magnitude below existing experimental data.Comment: Latex, 23 pages, 13 figures. Checked numerical integration one more way; added results for one more proton distribution amplitude; a few other minor changes. Version to appear in Phys. Rev.

    Experiments to Find or Exclude a Long-Lived, Light Gluino

    Get PDF
    Gluinos in the mass range ~1 1/2 - 3 1/2 GeV are absolutely excluded. Lighter gluinos are allowed, except for certain ranges of lifetime. Only small parts of the mass-lifetime parameter space are excluded for larger masses unless the lifetime is shorter than ~ 2 10^{-11} (m_{gluino}/ GeV) sec. Refined mass and lifetime estimates for R-hadrons are given, present direct and indirect experimental constraints are reviewed, and experiments to find or definitively exclude these possibilities are suggested.Comment: 27 pp, latex with 1 uufiled figure, RU-94-35. New version amplifies discussion of some points and corresponds to version for Phys. Rev.

    On U(1)-charged domain walls

    Full text link
    A classical field system of two interacting fields -- a real Higgs field and a complex scalar field -- is considered. It is shown that in such field system a non-trivial solution exists, which is U(1) charged topological kink. Some questions of stability of the obtained solution are discussed. An improved variational procedure for searching of topological U(1) charged solutions is given.Comment: 16 pages, LaTeX, 4 PostScript figure

    Wide-angle elastic scattering and color randomization

    Get PDF
    Baryon-baryon elastic scattering is considered in the independent scattering (Landshoff) mechanism. It is suggested that for scattering at moderate energies, direct and interchange quark channels contribute with equal color coefficients because the quark color is randomized by soft gluon exchange during the hadronization stage. With this assumption, it is shown that the ratio of cross sections Rpp/ppR_{\overline{p} p/ p p} at CM angle θ=900\theta = 90^0 decreases from a high energy value of R_{\pbar p / pp} \approx 1/2.7, down to R_{\pbar p / pp} \approx 1/28, compatible with experimental data at moderate energies. This sizable fall in the ratio seems to be characteristic of the Landshoff mechanism, in which changes at the quark level have a strong effect precisely because the hadronic process occurs via multiple quark scatterings. The effect of color randomization on the angular distribution of proton-proton elastic scattering and the cross section ratio Rnp/ppR_{np/pp} is also discussed.Comment: 18 pages, latex2e, 4 uuencoded figures, include

    Classical versus quantum dynamics of the atomic Josephson junction

    Full text link
    We compare the classical (mean-field) dynamics with the quantum dynamics of atomic Bose-Einstein condensates in double-well potentials. The quantum dynamics are computed using a simple scheme based upon the Raman-Nath equations. Two different methods for exciting a non-equilbrium state are considered: an asymmetry between the wells which is suddenly removed, and a periodic time oscillating asymmetry. The first method generates wave packets that lead to collapses and revivals of the expectation values of the macroscopic variables, and we calculate the time scale for these revivals. The second method permits the excitation of a single energy eigenstate of the many-particle system, including Schroedinger cat states. We also discuss a band theory interpretation of the energy level structure of an asymmetric double-well, thereby identifying analogies to Bloch oscillations and Bragg resonances. Both the Bloch and Bragg dynamics are purely quantum and are not contained in the mean-field treatment.Comment: 31 pages, 14 figure

    Lattice Calculation of Point-to-Point Hadron Current Correlation

    Full text link
    Point-to-point correlation functions of hadron currents in the QCD vacuum are calculated on a lattice and analyzed using dispersion relations, providing physical information down to small spatial separations. Qualitative agreement with phenomenological results is obtained in channels for which experimental data are available, and these correlation functions are shown to be useful in exploring approximations based on sum rules and interacting instantons.Comment: 11 page

    Clustering in Highest Energy Cosmic Rays: Physics or Statistics?

    Full text link
    Directional clustering can be expected in cosmic ray observations due to purely statistical fluctuations for sources distributed randomly in the sky. We develop an analytic approach to estimate the probability of random cluster configurations, and use these results to study the strong potential of the HiRes, Auger, Telescope Array and EUSO/OWL/AirWatch facilities for deciding whether any observed clustering is most likely due to non-random sources.Comment: 19 pages, LaTeX, 3 figure

    Interpretation of y-scaling of the nuclear response

    Get PDF
    The behavior of the nuclear matter response in the region of large momentum transfer, in which plane wave impulse approximation predicts the onset of y-scaling, is discussed. The theoretical analysis shows that scaling violations produced by final state interactions are driven by the momentum dependence of the nucleon-nucleon scattering cross section. Their study may provide valuable information on possible modifications of nucleon-nucleon scattering in the nuclear medium.Comment: 4 pages with 3 figures. To appear in Physical Review Letter

    Does J/ψπ+πJ/\psi \rightarrow \pi^{+} \pi^{-} fix the Electromagnetic Form Factor Fπ(t)F_{\pi}(t) at t=MJ/ψ2t=M_{J/\psi}^2?

    Full text link
    We show that the J/ψπ+πJ/\psi \rightarrow \pi^{+} \pi^{-} decay is a reliable source of information for the electromagnetic form factor of the pion at t=MJ/ψ2=9.6GeV2t=M_{J/\psi}^2=9.6 {\rm GeV}^2 by using general arguments to estimate, or rather, put upper bounds on, the background processes that could spoil this extraction. We briefly comment on the significance of the resulting Fπ(MJ/ψ2)F_{\pi}(M_{J/\psi}^2).Comment: 10 pages revtex manuscript, one figure--not included, U. of MD PP #94-00

    Limit on the mass of a long-lived or stable gluino

    Full text link
    We reinterpret the generic CDF charged massive particle limit to obtain a limit on the mass of a stable or long-lived gluino. Various sources of uncertainty are examined. The RR-hadron spectrum and scattering cross sections are modeled based on known low-energy hadron physics and the resultant uncertainties are quantified and found to be small compared to uncertainties from the scale dependence of the NLO pQCD production cross sections. The largest uncertainty in the limit comes from the unknown squark mass: when the squark -- gluino mass splitting is small, we obtain a gluino mass limit of 407 GeV, while in the limit of heavy squarks the gluino mass limit is 397 GeV. For arbitrary (degenerate) squark masses, we obtain a lower limit of 322 GeV on the gluino mass. These limits apply for any gluino lifetime longer than 30\sim 30 ns, and are the most stringent limits for such a long-lived or stable gluino.Comment: 15 pages, 5 figures, accepted for publication in JHE
    corecore