3,256 research outputs found
Detecting Gluino-Containing Hadrons
When SUSY breaking produces only dimension-2 operators, gluino and photino
masses are of order 1 GeV or less. The gluon-gluino bound state has mass
1.3-2.2 GeV and lifetime > 10^{-5} - 10^{-10} s. This range of mass and
lifetime is largely unconstrained because missing energy and beam dump
techniques are ineffective. With only small modifications, upcoming K^0 decay
experiments can study most of the interesting range. The lightest
gluino-containing baryon (uds-gluino) is long-lived or stable; experiments to
find it and the uud-gluino are also discussed.Comment: 13 pp, 1 figure (uuencoded). Descendant of hep-ph/9504295,
hep-ph/9508291, and hep-ph/9508292, focused on experimental search
techniques. To be published in Phys Rev Let
Experiments to Find or Exclude a Long-Lived, Light Gluino
Gluinos in the mass range ~1 1/2 - 3 1/2 GeV are absolutely excluded. Lighter
gluinos are allowed, except for certain ranges of lifetime. Only small parts of
the mass-lifetime parameter space are excluded for larger masses unless the
lifetime is shorter than ~ 2 10^{-11} (m_{gluino}/ GeV) sec. Refined mass and
lifetime estimates for R-hadrons are given, present direct and indirect
experimental constraints are reviewed, and experiments to find or definitively
exclude these possibilities are suggested.Comment: 27 pp, latex with 1 uufiled figure, RU-94-35. New version amplifies
discussion of some points and corresponds to version for Phys. Rev.
Correlation between Compact Radio Quasars and Ultra-High Energy Cosmic Rays
Some proposals to account for the highest energy cosmic rays predict that
they should point to their sources. We study the five highest energy events
(E>10^20 eV) and find they are all aligned with compact, radio-loud quasars.
The probability that these alignments are coincidental is 0.005, given the
accuracy of the position measurements and the rarity of such sources. The
source quasars have redshifts between 0.3 and 2.2. If the correlation pointed
out here is confirmed by further data, the primary must be a new hadron or one
produced by a novel mechanism.Comment: 8 pages, 3 tables, revtex. with some versions of latex it's necessary
to break out the tables and latex them separately using article.sty rather
than revtex.st
Deeply Virtual Compton Scattering
We study in QCD the physics of deeply-virtual Compton scattering (DVCS)---the
virtual Compton process in the large s and small t kinematic region. We show
that DVCS can probe a new type of off-forward parton distributions. We derive
an Altarelli-Parisi type of evolution equations for these distributions. We
also derive their sum rules in terms of nucleon form-factors of the twist-two
quark and gluon operators. In particular, we find that the second sum rule is
related to fractions of the nucleon spin carried separately by quarks and
gluons. We estimate the cross section for DVCS and compare it with the
accompanying Bethe-Heitler process at CEBAF and HERMES kinematics.Comment: 20 pages, 2 figures, replaced with the version to appear in Phys.
Rev.
Large-x Parton Distributions
Reliable knowledge of parton distributions at large x is crucial for many
searches for new physics signals in the next generation of collider
experiments. Although these are generally well determined in the small and
medium x range, it has been shown that their uncertainty grows rapidly for
x>0.1. We examine the status of the gluon and quark distributions in light of
new questions that have been raised in the past two years about "large-x"
parton distributions, as well as recent measurements which have improved the
parton uncertainties. Finally, we provide a status report of the data used in
the global analysis, and note some of the open issues where future experiments,
including those planned for Jefferson Labs, might contribute.Comment: LaTeX, 9 pages, 7 figures. Invited talk presented at the ``Workshop
on Nucleon Structure in the High x-Bjorken Region (HiX2000),'' Temple
University, Philadelphia, Pennsylvania, March 30-April 1, 200
Wide-angle elastic scattering and color randomization
Baryon-baryon elastic scattering is considered in the independent scattering
(Landshoff) mechanism. It is suggested that for scattering at moderate
energies, direct and interchange quark channels contribute with equal color
coefficients because the quark color is randomized by soft gluon exchange
during the hadronization stage. With this assumption, it is shown that the
ratio of cross sections at CM angle
decreases from a high energy value of R_{\pbar p / pp} \approx 1/2.7, down to
R_{\pbar p / pp} \approx 1/28, compatible with experimental data at moderate
energies. This sizable fall in the ratio seems to be characteristic of the
Landshoff mechanism, in which changes at the quark level have a strong effect
precisely because the hadronic process occurs via multiple quark scatterings.
The effect of color randomization on the angular distribution of proton-proton
elastic scattering and the cross section ratio is also discussed.Comment: 18 pages, latex2e, 4 uuencoded figures, include
Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles
The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes
of massive and massless particles is presented in a form that is particularly
well suited to a direct implementation in computer algebra. Moreover, we
explain how to exploit discrete symmetries and how to avoid unphysical poles in
amplitudes in practice. The efficiency of the formalism is demonstrated by
giving explicit compact results for the helicity amplitudes of the processes
gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.Comment: 24 pages, late
Structure and surface properties of eddies in the southeast Pacific Ocean
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 2295â2309, doi:10.1002/jgrc.20175.A number of studies have posited that coastally generated eddies could cool the southeast Pacific Ocean (SEP) by advecting cool, upwelled waters offshore. We examine this mechanism by characterizing the upper-ocean properties of mesoscale eddies in the SEP with a variety of observations and by estimating the surface-layer eddy heat flux divergence with satellite data. Cyclonic and anticyclonic eddies observed during two cruises featured deep positive salinity anomalies along the 26.5 kg mâ3isopycnal, indicating that the eddies had likely trapped and transported coastal waters offshore. The cyclonic eddies observed during the cruises were characterized by shoaling isopycnals in the upper 200 m and cool near-surface temperature anomalies, whereas the upper-ocean structure of anticyclonic eddies was more variable. Using a variety of large-scale observations, including Argo float profiles, drifter records, and satellite sea surface temperature fields, we show that, relative to mean conditions, cyclonic eddies are associated with cooler surface temperatures and that anticyclonic eddies are associated with warmer surface temperatures. Within each data set, the mean eddy surface temperature anomalies are small and of approximately equal magnitude but opposite sign. Eddy statistics drawn from satellite altimetry data reveal that cyclonic and anticyclonic eddies occur with similar frequency and have similar average radii in the SEP. A satellite-based estimate of the surface-layer eddy heat flux divergence, while large in coastal regions, is small when averaged over the SEP, suggesting that eddies do not substantially contribute to cooling the surface layer of the SEP.This
work was supported by NOAAâs Climate Program Office and by NSF Grant
OCE-0745508. Microwave OI SST data are produced by Remote Sensing
Systems and sponsored by National Oceanographic Partnership Program
(NOPP), the NASA Earth Science Physical Oceanography Program, and
the NASA MEaSUREs DISCOVER Project
Generalized Gluon Currents and Applications in QCD
We consider the process containing two quark lines and an arbitrary number of
gluons in a spinor helicity framework. A current with two off-shell gluons
appears in the amplitude. We first study this modified gluon current using
recursion relations. The recursion relation for the modified gluon current is
solved for the case of like-helicity gluons. We apply the modified gluon
current to compute the amplitude for in the like-helicity gluon case.Comment: 80 pages, 2 figures (appended in pictex), CLNS 91/112
Are ultrahigh energy cosmic rays signals of supersymmetry?
We investigate the possibility that cosmic rays of energy larger than the
Greisen-Zatsepin-Kuzmin cutoff are not nucleons, but a new stable, massive,
hadron that appears in many extensions of the standard model. We focus
primarily on the S^0, a uds-gluino bound state. The range of the S^0 through
the cosmic background radiation is significantly longer than the range of
nucleons, and therefore can originate from sources at cosmoglogical distances.Comment: 20 page LaTeX file with 5 PostScript figures included with epsf.
Discussion of acceleration mechanisms has been elaborated and some new
references have been added. No change in conclusions or figure
- âŠ