27 research outputs found
The clustering of ultra-high energy cosmic rays and their sources
The sky distribution of cosmic rays with energies above the 'GZK cutoff'
holds important clues to their origin. The AGASA data, although consistent with
isotropy, shows evidence for small-angle clustering, and it has been argued
that such clusters are aligned with BL Lacertae objects, implicating these as
sources. It has also been suggested that clusters can arise if the cosmic rays
come from the decays of very massive relic particles in the Galactic halo, due
to the expected clumping of cold dark matter. We examine these claims and show
that both are in fact not justified.Comment: 13 pages, 8 figures, version in press at Phys. Rev.
Anisotropy at the end of the cosmic ray spectrum?
The starburst galaxies M82 and NGC253 have been proposed as the primary
sources of cosmic rays with energies above eV. For energies \agt
10^{20.3} eV the model predicts strong anisotropies. We calculate the
probabilities that the latter can be due to chance occurrence. For the highest
energy cosmic ray events in this energy region, we find that the observed
directionality has less than 1% probability of occurring due to random
fluctuations. Moreover, during the first 5 years of operation at Auger, the
observation of even half the predicted anisotropy has a probability of less
than to occur by chance fluctuation. Thus, this model can be subject
to test at very small cost to the Auger priors budget and, whatever the outcome
of that test, valuable information on the Galactic magnetic field will be
obtained.Comment: Final version to be published in Physical Review
A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2
The A-dependence of the quasielastic A(e,e'p) reaction has been studied at
SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and
6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the
average probability that the struck proton escapes from the nucleus A without
interaction. Several calculations predict a significant increase in T with
momentum transfer, a phenomenon known as Color Transparency. No significant
rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73
Collider aspects of flavour physics at high Q
This review presents flavour related issues in the production and decays of
heavy states at LHC, both from the experimental side and from the theoretical
side. We review top quark physics and discuss flavour aspects of several
extensions of the Standard Model, such as supersymmetry, little Higgs model or
models with extra dimensions. This includes discovery aspects as well as
measurement of several properties of these heavy states. We also present public
available computational tools related to this topic.Comment: Report of Working Group 1 of the CERN Workshop ``Flavour in the era
of the LHC'', Geneva, Switzerland, November 2005 -- March 200
Recommended from our members
The forward physics facility at the high-luminosity LHC
High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential
Recommended from our members
Lipidomic analysis reveals prostanoid profiles in human term pregnant myometrium.
noProstanoids modulate the activity of human pregnant myometrium and their functional role can be appreciated through characterisation of prostanoid receptors and tissue concentration of prostanoids. We have applied a lipidomic approach to elucidate the profile of prostanoids in human non-labouring and labouring myometrium. We have identified a total of nineteen prostanoids including prostacyclin, thromboxanes, prostaglandins and dihydro-prostaglandins. Prostacyclin was the predominant prostanoid in both non-labouring and labouring myometria, with PGD2 and PGF2¿ being the second most abundant. Although the total amount of prostanoids was increased in the labouring tissue, PGE2 and 13,14-dihydro-15-keto-PGE2 were the only prostanoids to increase significantly at early and late labour (p¿0.001). Our data suggest that PGF2¿ plays an important role in parturition, whilst the increase in PGE2 could occur to facilitate cervical dilation and relaxation of the lower myometrium during labour. Although the elevation in TXA2 was less marked than expected, in terms of translation to function even a relatively small increase in the level of this potent spasmogen may have significant effects