3,147 research outputs found

    Detecting Gluino-Containing Hadrons

    Get PDF
    When SUSY breaking produces only dimension-2 operators, gluino and photino masses are of order 1 GeV or less. The gluon-gluino bound state has mass 1.3-2.2 GeV and lifetime > 10^{-5} - 10^{-10} s. This range of mass and lifetime is largely unconstrained because missing energy and beam dump techniques are ineffective. With only small modifications, upcoming K^0 decay experiments can study most of the interesting range. The lightest gluino-containing baryon (uds-gluino) is long-lived or stable; experiments to find it and the uud-gluino are also discussed.Comment: 13 pp, 1 figure (uuencoded). Descendant of hep-ph/9504295, hep-ph/9508291, and hep-ph/9508292, focused on experimental search techniques. To be published in Phys Rev Let

    Mass distributions for nuclear disintegration from fission to evaporation

    Full text link
    By a proper choice of the excitation energy per nucleon we analyze the mass distributions of the nuclear fragmentation at various excitation energies. Starting from low energies (between 0.1 and 1 MeV/nucleon) up to higher energies about 12 MeV/n, we classified the mass yield characteristics for heavy nuclei (A>200) on the basis of Statistical Multifragmentation Model. The evaluation of fragment distribution with the excitation energy show that the present results exhibit the same trend as the experimental ones.Comment: 5 pages, 3 figure

    Experiments to Find or Exclude a Long-Lived, Light Gluino

    Get PDF
    Gluinos in the mass range ~1 1/2 - 3 1/2 GeV are absolutely excluded. Lighter gluinos are allowed, except for certain ranges of lifetime. Only small parts of the mass-lifetime parameter space are excluded for larger masses unless the lifetime is shorter than ~ 2 10^{-11} (m_{gluino}/ GeV) sec. Refined mass and lifetime estimates for R-hadrons are given, present direct and indirect experimental constraints are reviewed, and experiments to find or definitively exclude these possibilities are suggested.Comment: 27 pp, latex with 1 uufiled figure, RU-94-35. New version amplifies discussion of some points and corresponds to version for Phys. Rev.

    Possible manifestation of heavy stable colored particles in cosmology and cosmic rays

    Get PDF
    We discuss the cosmological implications as well as possible observability of massive, stable, colored particles which often appear in the discussion of physics beyond the standard model. We argue that if their masses are more than a few hundred GeV and if they saturate the halo density and/or occur with closure density of the universe, they are ruled out by the present WIMP search experiments as well as the searches for anomalous heavy isotopes of ordinary nuclei. We then comment on the possibility that these particles as well as the monopoles could be responsible for the ultra high energy cosmic rays with energy 1020\geq 10^{20} eV and point out that their low inelasticity argues against this.Comment: 9 pages; UMD-PP-98-1

    Quarkonium Formation Time in a Model-Independent Approach

    Full text link
    We use dispersion relations to reconstruct, in a model-independent way, the formation dynamics of heavy quarkonium from the experimental data on e+ e- annihilation to Q-bar Q. We extract a distribution of formation times with a mean value for the J/psi, tau{J/psi} = 0.44 fm; and for the Upsilon, tau{Upsilon} = 0.32 fm. The corresponding widths of these distributions are given by Delta-tau{J/psi} = 0.31 fm and Delta-tau{Upsilon} = 0.28 fm. This information can be used as an input in modeling of heavy quarkonium production on nuclear targets.Comment: 10 pages with 3 figure

    Electroproduction and Hadroproduction of Light Gluinos

    Get PDF
    In a class of supergravity models, the gluino and photino are massless at tree level and receive small masses through radiative corrections. In such models, one expects a gluino-gluon bound state, the R0R_0, to have a mass of between 1.0 and 2.2 GeV and a lifetime between 101010^{-10} and 10610^{-6} seconds. Applying peturbative QCD methods (whose validity we discuss), we calculate the production cross sections of R0R_0's in epe-p, πp\pi-p, KpK-p, pp\overline{p}-p and ppp-p collisions. Signatures are also discussed.Comment: 10 pages, latex, 6 figures uuencoded, figures also available via anonymous ftp to ftp://physics.wm.edu/pub/gluinofig.p

    Axion-like particles as ultra high energy cosmic rays?

    Full text link
    If Ultra High Energy Cosmic Rays (UHECRs) with E>4 10^{19} eV originate from BL Lacertae at cosmological distances as suggested by recent studies, the absence of the GZK cutoff can not be reconciled with Standard-Model particle properties. Axions would escape the GZK cutoff, but even the coherent conversion and back-conversion between photons and axions in large-scale magnetic fields is not enough to produce the required flux. However, one may construct models of other novel (pseudo)scalar neutral particles with properties that would allow for sufficient rates of particle production in the source and shower production in the atmosphere to explain the observations. As an explicit example for such particles we consider SUSY models with light sgoldstinos.Comment: 5 pages, 2 postscript figures, ref. adde
    corecore