470 research outputs found
Inhibiting the Thermal Gelation of Copolymer Stabilized Nonaqueous Dispersions and the Synthesis of Full Color PMMA Particles
Polymeric particle dispersions have numerous potential applications; currently one of the most relevant is their use as inks in electrophoretic displays. These colloidal particles are synthesized from the appropriate monomer using nonaqueous dispersion (NAD) polymerization in a nonpolar solvent, which requires a stabilizer to control particle size and morphology. We have previously reported the facile synthesis of poly(methyl methacrylate)-block-poly(octadecyl acrylate) (PMMA-b-PODA) by atom transfer radical polymerization (ATRP), and its use in the NAD polymerization of MMA in hexane/dodecane solvent mixtures. Here we report the synthesis of monodisperse PMMA particles in dodecane following a standard “industrial” procedure using these PMMA-b-PODA stabilizers. However, it was observed that the particle suspensions solidified when they were left at temperatures below ?18 °C yet redispersed upon being heated. Differential scanning calorimetry, dynamic light scattering, and rheological studies demonstrated that this thermoresponsive behavior was due to a liquid–gel transition occurring at 17.5 °C as a consequence of the upper critical solution temperature of PODA in dodecane being traversed. Consequently, new copolymers were synthesized by ATRP with an ethylhexyl acrylate (EHA) co-monomer incorporated into the lyophilic (dodecane compatible) block. Dispersions stabilized by these PMMA-b-P(ODA-co-EHA) polymers with high EHA contents exhibited lower gelation temperatures because of the greater solvent compatibility with dodecane. The use of a PMMA65-b-(ODA10-co-EHA45) copolymer stabilizer (with the highest EHA content) gave PMMA dispersions that showed no gelation down to 4 °C and monodisperse cross-linked PMMA particles containing organic dyes (cyan, magenta, red, and black) giving colored particles across the size range of approximately 100–1300 nm
Remote detection of past habitability at Mars-analogue hydrothermal alteration terrains using an ExoMars Panoramic Camera emulator
JKH is funded by a Birkbeck University of London Graduate Teaching Assistantship. CRC is funded by a Royal Society of Edinburgh Personal Research Fellowship co-funded by Marie Curie Actions. The Aberystwyth research leading to these results has been funded by the UK Space Agency, ExoMars Panoramic Camera (PanCam) Grant Nos. ST/G003114/1, ST/I002758/1, STL001454/1, and the UK Space Agency CREST2 PanCam-2020 research Grant No. ST/L00500X/1. Additional Aberystwyth funding has come from The European Community’s Seventh Framework Programme (FP7/2007-2013), Grant Agreement Nos. 21881 PRoVisG, 241523 PRoViScout, and Grant Agreement No. 312377 PRoViDE. PMG is funded by a UK Space Agency Aurora Fellowship (grants ST/J005215/1 and ST/L00254X/1).A major scientific goal of the European Space Agency’s ExoMars 2018 rover is to identify evidence of life within the martian rock record. Key to this objective is the remote detection of geological substrates that are indicative of past habitable environments, which will rely on visual (stereo wide-angle, and high resolution images) and multispectral (440–1000 nm) data produced by the Panoramic Camera (PanCam) instrument. We deployed a PanCam emulator at four hydrothermal sites in the Námafjall volcanic region of Iceland, a Mars-analogue hydrothermal alteration terrain. At these sites, sustained acidic–neutral aqueous interaction with basaltic substrates (crystalline and sedimentary) has produced phyllosilicate, ferric oxide, and sulfate-rich alteration soils, and secondary mineral deposits including gypsum veins and zeolite amygdales. PanCam emulator datasets from these sites were complemented with (i) NERC Airborne Research and Survey Facility aerial hyperspectral images of the study area; (ii) in situ reflectance spectroscopy (400–1000 nm) of PanCam spectral targets; (iii) laboratory X-ray Diffraction, and (iv) laboratory VNIR (350–2500 nm) spectroscopy of target samples to identify their bulk mineralogy and spectral properties. The mineral assemblages and palaeoenvironments characterised here are analogous to neutral–acidic alteration terrains on Mars, such as at Mawrth Vallis and Gusev Crater. Combined multispectral and High Resolution Camera datasets were found to be effective at capturing features of astrobiological importance, such as secondary gypsum and zeolite mineral veins, and phyllosilicate-rich substrates. Our field observations with the PanCam emulator also uncovered stray light problems which are most significant in the NIR wavelengths and investigations are being undertaken to ensure that the flight model PanCam cameras are not similarly affected.Publisher PDFPeer reviewe
Multispectral Evidence of Alteration from Murray Ridge to Marathon Valley Observed by the Opportunity Pancam on the Rim of Endeavour Crater, Mars
The Mars Exploration Rover Opportunity has been traversing the rim of the Noachianaged, 22 km diameter Endeavour crater. Circa sol 3390 of its mission, Opportunity reached the northern tip of the rim segment known as Solander Point and has since been traversing the rim to the south to its current location at the break in the rim known as Marathon Valley. The rocks making up the rim are dominated by impact breccias consisting of clasts and a finergrained matrix. Several segments of the rim are transected by fractures as observed from orbital HiRISE imagery. Pancam multispectral observations of outcrop in these fracture regions, including part of the rim crest dubbed Murray Ridge, the Hueytown fracture, and Marathon Valley have been made. Over the range of 430 to 1010 nm there are changes in the multispectral reflectance signature of the breccia matrix with an increase in 535 nm and 904 nm band depth. This is attributed to oxidation and an increase in ferric oxides in these areas. In situ observations by the rover's APXS also indicate chemical differences associated with the matrix along these fractures, including increasing Fe/Mn southward from Solander Point to a region having an AlOH signature in CRISM spectra, and generally higher SO3 in the Hueytown fracture region and the area around Spirit of St. Louis. Overturned rocks observed on Murray Ridge were determined by the APXS to have elevated Mn and Pancam spectra of the high Mn spots have a characteristic red, featureless slope. This spectrum was also observed in association with some coatings on blocks of the sulfaterich Grasberg formation. Spectra resembling red hematite are observed in some zones in association with the craterform feature Spirit of St. Louis outside the mouth (to the west) of Marathon Valley. Marathon Valley itself has been observed from orbital hyperspectral observations by the CRISM sensor to host occurrences of Fe/Mg smectite minerals indicating extensive aqueous alteration in this region. Pancam observations in Marathon Valley will play an important role in surveying outcrop and making VNIR spectral comparisons with clay bearing outcrop examined earlier in the mission at the Matijevic Hill region
Highly coloured and electrophoretically active polymer microparticles via staggered dispersion polymerisation in supercritical carbon dioxide and dodecane
Devices featuring electrophoretic displays (EPD) have become extremely popular in recent years because of their low power consumption, high readability and thin display designs, but a product with a full colour gamut comparable with liquid crystal displays (LCDs) has not yet been commercialised. In this article, we demonstrate that staggering the addition of methyl methacrylate (MMA) monomer and low quantities of a coloured dye crosslinker is an effective route to producing well-defined and covalently-linked, strongly coloured PMMA microparticles in one-pot, via dispersion polymerisation in supercritical carbon dioxide (scCO2). This novel methodology is synthetically simple, readily scalable and has the added cachet of being cost effective because the functional molecules can be confined on the microparticle surface such that even at low concentrations, the resulting materials are brightly coloured. We then demonstrate the applicability of this approach to another functional comonomer/crosslinker system in 2-dimethylaminoethyl methacrylate (DMAEMA)/ethyleneglycol dimethacrylate (EGDMA), in this case allowing hierarchically structured ‘pomegranate-like’ microparticles with polarisable charge to be produced over a range of DMAEMA loadings as high as 44 wt%. Finally, the performance of these materials in out-of-plane EPD test cells is compared against analogues synthesised in dodecane. These tests revealed that the coloured microparticles fabricated in scCO2 performed as well as or better than their dodecane synthesised counterparts, consistently producing the cleanest white state and achieving effective colour switching over ten cycles
Constraining the Origin of Basaltic Volcanic Rocks Observed by Opportunity Along the Rim of Endeavour Crater
The Mars Exploration Rover (MER) Opportunity continues its exploration along the rim of Endeavour Crater. While the primary focus for investigation has been to seek evidence of aqueous alteration, Opportunity has observed a variety of rock types, including some that are hard and relatively unaltered. These rocks tend to occur most commonly as "float rocks" or "erratics" where the geologic setting does not clearly reveal their origin. Along the rim of Endeavour crater (Fig. 1), such rocks, commonly noted in Panoramic Camera (Pancam) left eye composites as "blue rocks", are abundant components of some of the Endeavour crater rim deposits, scree slopes, and colluvium deposits. In this abstract, we examine the similarity of several of these rocks analyzed using Opportunity's Alpha Particle X-Ray Spectrometer (APXS), images and color from the Pancam, and textures observed with the Microscopic Imager (MI. At issue is the blue rocks origin; are they impact melt or volcanic, what is their age relative to Endeavour crater, and how they are related to each other
Behavioural activation written self-help to improve mood, wellbeing and quality of life in people with dementia supported by informal carers (PROMOTE): study protocol for a single-arm feasibility study.
Background: Increases in life expectancy have resulted in a global rise in dementia
prevalence. Dementia is associated with poor wellbeing, low quality of life and
increased incidence of mental health difficulties such as, low mood or depression.
However, currently there is limited access to evidence-based psychological
interventions for people with dementia experiencing low mood and poor wellbeing.
Behavioural activation-based self-help, supported by informal carers and guided by
mental health professionals, may represent an effective and acceptable solution.
Methods/design: The present study is a Phase II (feasibility) single-arm trial informed
by the MRC Complex Interventions Research Methods Framework. Up to fifty
dementia participant/informal carer dyads will be recruited from a variety of settings
including primary care, dementia-specific health settings, and community outreach.
People living with dementia will receive behavioural activation based self-help and be
supported by their informal carer who has received training in the skills required to
support the self-help approach. In turn, during the use of the intervention the informal
carer will be guided by mental health professionals to help them work through the
materials and problem solve any difficulties. Consistent with the objectives of feasibility
studies, outcomes relating to recruitment from different settings, employment of
different recruitment methods, attrition, data collection procedures, clinical delivery and
acceptability of the intervention will be examined. Clinical outcomes for people with
dementia (symptoms of depression and quality of life) and informal carers (symptoms
of depression and anxiety, carer burden and quality of life) will be measured pretreatment
and at 3 months post-treatment allocation.
Discussion: This study will examine the feasibility and acceptability of a novel
behavioural activation-based self-help intervention designed to promote wellbeing and
improve low mood in people living with dementia, alongside methodological and
procedural uncertainties associated with research-related procedures. As determined
by pre-specified progression criteria, if research procedures and the new intervention
demonstrate feasibility and acceptability, results will then be used to inform the design
of a pilot randomised controlled trial (RCT) to specifically examine remaining
methodological uncertainties associated with recruitment into a randomised controlled
design.This study is collaboratively funded by Cornwall Foundation Partnership Trust, South West
Peninsula Academic Health Sciences Network and the University of Exeter
Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration
Over the last ~ 3 years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~ 80 m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by Mössbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS) observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in the west. We propose that these variations are the result of two distinct alteration regimes that may or may not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of Home Plate and lower temperature alteration of the western side that produced npOx
Spectral Variability among Rocks in Visible and Near Infrared Multispectral Pancam Data Collected at Gusev Crater: Examinations using Spectral Mixture Analysis and Related Techniques
Visible and Near Infrared (VNIR) multispectral observations of rocks made by the Mars Exploration Rover Spirit s Panoramic camera (Pancam) have been analysed using a spectral mixture analysis (SMA) methodology. Scenes have been examined from the Gusev crater plains into the Columbia Hills. Most scenes on the plains and in the Columbia Hills could be modeled as three endmember mixtures of a bright material, rock, and shade. Scenes of rocks disturbed by the rover s Rock Abrasion Tool (RAT) required additional endmembers. In the Columbia Hills there were a number of scenes in which additional rock endmembers were required. The SMA methodology identified relatively dust-free areas on undisturbed rock surfaces, as well as spectrally unique areas on RAT abraded rocks. Spectral parameters from these areas were examined and six spectral classes were identified. These classes are named after a type rock or area and are: Adirondack, Lower West Spur, Clovis, Wishstone, Peace, and Watchtower. These classes are discriminable based, primarily, on near-infrared (NIR) spectral parameters. Clovis and Watchtower class rocks appear more oxidized than Wishstone class rocks and Adirondack basalts based on their having higher 535 nm band depths. Comparison of the spectral parameters of these Gusev crater rocks to parameters of glass-dominated basaltic tuffs indicates correspondence between measurements of Clovis and Watchtower classes, but divergence for the Wishstone class rocks which appear to have a higher fraction of crystalline ferrous iron bearing phases. Despite a high sulfur content, the rock Peace has NIR properties resembling plains basalts
- …