7 research outputs found
The eye, the kidney, and cardiovascular disease: old concepts, better tools, and new horizons.
Chronic kidney disease (CKD) is common, with hypertension and diabetes mellitus acting as major risk factors for its development. Cardiovascular disease is the leading cause of death worldwide and the most frequent end point of CKD. There is an urgent need for more precise methods to identify patients at risk of CKD and cardiovascular disease. Alterations in microvascular structure and function contribute to the development of hypertension, diabetes, CKD, and their associated cardiovascular disease. Homology between the eye and the kidney suggests that noninvasive imaging of the retinal vessels can detect these microvascular alterations to improve targeting of at-risk patients. Retinal vessel-derived metrics predict incident hypertension, diabetes, CKD, and cardiovascular disease and add to the current renal and cardiovascular risk stratification tools. The advent of optical coherence tomography (OCT) has transformed retinal imaging by capturing the chorioretinal microcirculation and its dependent tissue with near-histological resolution. In hypertension, diabetes, and CKD, OCT has revealed vessel remodeling and chorioretinal thinning. Clinical and preclinical OCT has linked retinal microvascular pathology to circulating and histological markers of injury in the kidney. The advent of OCT angiography allows contrast-free visualization of intraretinal capillary networks to potentially detect early incipient microvascular disease. Combining OCT's deep imaging with the analytical power of deep learning represents the next frontier in defining what the eye can reveal about the kidney and broader cardiovascular health
Recommended from our members
High-sensitivity cardiac troponin and the diagnosis of myocardial infarction in patients with renal impairment.
The benefit and utility of high-sensitivity cardiac troponin (hs-cTn) in the diagnosis of myocardial infarction in patients with kidney impairment is unclear. Here, we describe implementation of hs-cTnI testing on the diagnosis, management, and outcomes of myocardial infarction in patients with and without kidney impairment. Consecutive patients with suspected acute coronary syndrome enrolled in a stepped-wedge, cluster-randomized controlled trial were included in this pre-specified secondary analysis. Kidney impairment was defined as an eGFR under 60mL/min/1.73m2. The index diagnosis and primary outcome of type 1 and type 4b myocardial infarction or cardiovascular death at one year were compared in patients with and without kidney impairment following implementation of hs-cTnI assay with 99th centile sex-specific diagnostic thresholds. Serum creatinine concentrations were available in 46,927 patients (mean age 61 years; 47% women), of whom 9,080 (19%) had kidney impairment. hs-cTnIs were over 99th centile in 46% and 16% of patients with and without kidney impairment. Implementation increased the diagnosis of type 1 infarction from 12.4% to 17.8%, and from 7.5% to 9.4% in patients with and without kidney impairment (both significant). Patients with kidney impairment and type 1 myocardial infarction were less likely to undergo coronary revascularization (26% versus 53%) or receive dual anti-platelets (40% versus 68%) than those without kidney impairment, and this did not change post-implementation. In patients with hs-cTnI above the 99th centile, the primary outcome occurred twice as often in those with kidney impairment compared to those without (24% versus 12%, hazard ratio 1.53, 95% confidence interval 1.31 to 1.78). Thus, hs-cTnI testing increased the identification of myocardial injury and infarction but failed to address disparities in management and outcomes between those with and without kidney impairment
Antibacterial activity of sucralfate versus aluminum chloride in simulated gastric fluid
Studies have previously demonstrated that sucralfate possesses intrinsic antibacterial activity. This study was designed to indirectly assess whether aluminum is the active antibacterial component of sucralfate and to further evaluate factors that may influence this agent's antibacterial activity. Utilizing an in vitro model, the antibacterial activity of sucralfate, an equivalent quantity of aluminum in the form of aluminum chloride, and a control were compared. In addition, the influences of bacterial species ( Enterobacter cloacae and Pseudomonas aeruginosa ), time (0–24 h) and environmental pH (3, 5, 7) on the agents' antibacterial activities were evaluated. Equivalent quantities of aluminum, as either sucralfate or aluminum chloride, were added to two of three flasks containing approximately 10 5 cfu/ml of bacteria in pH-adjusted simulated gastric fluid. The third flask served as a control. Samples were obtained over 24 h, diluted and subcultured onto agar plates. The experiments demonstrated that bacterial growth was influenced by pH, time and treatment (aluminum chloride or sucralfate). Regardless of pH or bacterial species, bacterial death occurred within 20 min following the addition of aluminum chloride. In contrast, bacterial death following the addition of sucralfate was more variable and appeared to be pH dependent. In conclusion, sucralfate and aluminum chloride both possess antibacterial activity, even at pH values that normally support bacterial growth in gastric fluid. Although differences in the antibacterial activity of the two agents may in part be related to drug-induced changes in pH, these differences also support data suggesting that aluminum release from sucralfate is incomplete and is dependent on pH.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47895/1/10096_2005_Article_BF02111825.pd