4,037 research outputs found

    High-frequency data observations from space shuttle main engine low pressure fuel turbopump discharge duct flex joint tripod failure investigation

    Get PDF
    Observations made by Marshall Space Flight Center (MSFC) engineers during their participation in the Space Shuttle Main Engine (SSME) low pressure fuel turbopump discharge duct flex joint tripod failure investigation are summarized. New signal processing techniques used by the Component Assessment Branch and the Induced Environments Branch during the failure investigation are described in detail. Moreover, nonlinear correlations between frequently encountered anomalous frequencies found in SSME dynamic data are discussed. A recommendation is made to continue low pressure fuel (LPF) duct testing through laboratory flow simulations and MSFC-managed technology test bed SSME testing

    Variational Integrators for the Gravitational N-Body Problem

    Get PDF
    This paper describes a fourth-order integration algorithm for the gravitational N-body problem based on discrete Lagrangian mechanics. When used with shared timesteps, the algorithm is momentum conserving and symplectic. We generalize the algorithm to handle individual time steps; this introduces fifth-order errors in angular momentum conservation and symplecticity. We show that using adaptive block power of two timesteps does not increase the error in symplecticity. In contrast to other high-order, symplectic, individual timestep, momentum-preserving algorithms, the algorithm takes only forward timesteps. We compare a code integrating an N-body system using the algorithm with a direct-summation force calculation to standard stellar cluster simulation codes. We find that our algorithm has about 1.5 orders of magnitude better symplecticity and momentum conservation errors than standard algorithms for equivalent numbers of force evaluations and equivalent energy conservation errors.Comment: 31 pages, 8 figures. v2: Revised individual-timestepping description, expanded comparison with other methods, corrected error in predictor equation. ApJ, in pres

    Variational Integrators for Almost-Integrable Systems

    Full text link
    We construct several variational integrators--integrators based on a discrete variational principle--for systems with Lagrangians of the form L = L_A + epsilon L_B, with epsilon << 1, where L_A describes an integrable system. These integrators exploit that epsilon << 1 to increase their accuracy by constructing discrete Lagrangians based on the assumption that the integrator trajectory is close to that of the integrable system. Several of the integrators we present are equivalent to well-known symplectic integrators for the equivalent perturbed Hamiltonian systems, but their construction and error analysis is significantly simpler in the variational framework. One novel method we present, involving a weighted time-averaging of the perturbing terms, removes all errors from the integration at O(epsilon). This last method is implicit, and involves evaluating a potentially expensive time-integral, but for some systems and some error tolerances it can significantly outperform traditional simulation methods.Comment: 14 pages, 4 figures. Version 2: added informative example; as accepted by Celestial Mechanics and Dynamical Astronom

    Application of multispectral radar and LANDSAT imagery to geologic mapping in death valley

    Get PDF
    Side-Looking Airborne Radar (SLAR) images, acquired by JPL and Strategic Air Command Systems, and visible and near-infrared LANDSAT imagery were applied to studies of the Quaternary alluvial and evaporite deposits in Death Valley, California. Unprocessed radar imagery revealed considerable variation in microwave backscatter, generally correlated with surface roughness. For Death Valley, LANDSAT imagery is of limited value in discriminating the Quaternary units except for alluvial units distinguishable by presence or absence of desert varnish or evaporite units whose extremely rough surfaces are strongly shadowed. In contrast, radar returns are most strongly dependent on surface roughness, a property more strongly correlated with surficial geology than is surface chemistry

    Comparison of Gravitational Wave Detector Network Sky Localization Approximations

    Full text link
    Gravitational waves emitted during compact binary coalescences are a promising source for gravitational-wave detector networks. The accuracy with which the location of the source on the sky can be inferred from gravitational wave data is a limiting factor for several potential scientific goals of gravitational-wave astronomy, including multi-messenger observations. Various methods have been used to estimate the ability of a proposed network to localize sources. Here we compare two techniques for predicting the uncertainty of sky localization -- timing triangulation and the Fisher information matrix approximations -- with Bayesian inference on the full, coherent data set. We find that timing triangulation alone tends to over-estimate the uncertainty in sky localization by a median factor of 44 for a set of signals from non-spinning compact object binaries ranging up to a total mass of 20M⊙20 M_\odot, and the over-estimation increases with the mass of the system. We find that average predictions can be brought to better agreement by the inclusion of phase consistency information in timing-triangulation techniques. However, even after corrections, these techniques can yield significantly different results to the full analysis on specific mock signals. Thus, while the approximate techniques may be useful in providing rapid, large scale estimates of network localization capability, the fully coherent Bayesian analysis gives more robust results for individual signals, particularly in the presence of detector noise.Comment: 11 pages, 7 Figure

    Ocean warming-acidification synergism undermines dissolved organic matter assembly.

    Get PDF
    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected

    Family Conflict Observations and Outcomes among Adopted School-Age Children with Lesbian, Gay, and Heterosexual Parents

    Get PDF
    Children’s externalizing problems are associated with family conflict among children and their biological parents, yet these linkages have remained unexamined among adoptive or lesbian and gay parent families. Investigating family processes facilitative of adjustment among adoptees, who face unique developmental challenges, is warranted. This multimethod study of 96 (26 lesbian, 29 gay, 41 heterosexual parent) adoptive families examined observations of adoptive family conflict and associations with child adjustment and feelings about adoption (children’s Mage = 8 years). The sample was recruited from 5 private, domestic infant adoption agencies across the United States. Parents and children reported about children’s externalizing problems and feelings about adoption, respectively. Observations of family conflict interaction were rated from videotaped family discussions. Family interactions were associated with children’s behavioral and adoption-specific adjustment, yet analysis of variance and hierarchical linear modeling analyses revealed no differences by parental sexual orientation in family dynamics (i.e., negativity/conflict, positive affect, cohesiveness) or child outcomes. Parents generally reported children to have few externalizing behaviors. Children reported positive feelings, moderate preoccupation, and low negativity about their adoption. These findings extend the family systems literature about conflict and child development among diverse families with sexual minority parents and adopted children. Practitioners who work with adoptive and sexual minority parent families can encourage positive and cohesive family interactions in supporting children’s adjustment. (PsycINFO Database Record (c) 2019 APA, all rights reserved
    • …
    corecore