4,174 research outputs found
Early Advanced LIGO binary neutron-star sky localization and parameter estimation
2015 will see the first observations of Advanced LIGO and the start of the
gravitational-wave (GW) advanced-detector era. One of the most promising
sources for ground-based GW detectors are binary neutron-star (BNS)
coalescences. In order to use any detections for astrophysics, we must
understand the capabilities of our parameter-estimation analysis. By simulating
the GWs from an astrophysically motivated population of BNSs, we examine the
accuracy of parameter inferences in the early advanced-detector era. We find
that sky location, which is important for electromagnetic follow-up, can be
determined rapidly (~5 s), but that sky areas may be hundreds of square
degrees. The degeneracy between component mass and spin means there is
significant uncertainty for measurements of the individual masses and spins;
however, the chirp mass is well measured (typically better than 0.1%).Comment: 4 pages, 2 figures. Published in the proceedings of Amaldi 1
The not-so-massive black hole in the microquasar GRS1915+105
We present a new dynamical study of the black hole X-ray transient GRS1915+105 making use of near-infrared spectroscopy obtained with X-shooter at the VLT. We detect a large number of donor star absorption features across a wide range of wavelengths spanning the H and K bands. Our 24 epochs covering a baseline of over 1 year permit us to determine a new binary ephemeris including a refined orbital period of P=33.85 +/- 0.16 d. The donor star radial velocity curves deliver a significantly improved determination of the donor semi-amplitude which is both accurate (K_2=126 +/- 1 km/s) and robust against choice of donor star template and spectral features used. We furthermore constrain the donor star's rotational broadening to vsini=21 +/-4 km/s, delivering a binary mass ratio of q=0.042 +/- 0.024. If we combine these new constraints with distance and inclination estimates derived from modelling the radio emission, a black hole mass of M_BH=10.1 +/- 0.6 M_sun is inferred, paired with an evolved mass donor of M_2=0.47 +/- 0.27 M_sun. Our analysis suggests a more typical black hole mass for GRS1915+105 rather than the unusually high values derived in the pioneering dynamical study by Greiner et al. (2001). Our data demonstrate that high-resolution infrared spectroscopy of obscured accreting binaries can deliver dynamical mass determinations with a precision on par with optical studies
Supplement: Going the Distance: Mapping Host Galaxies of LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and Targeted Follow-up
This is a supplement to the Letter of Singer et al.
(https://arxiv.org/abs/1603.07333), in which we demonstrated a rapid algorithm
for obtaining joint 3D estimates of sky location and luminosity distance from
observations of binary neutron star mergers with Advanced LIGO and Virgo. We
argued that combining the reconstructed volumes with positions and redshifts of
possible host galaxies can provide large-aperture but small field of view
instruments with a manageable list of targets to search for optical or infrared
emission. In this Supplement, we document the new HEALPix-based file format for
3D localizations of gravitational-wave transients. We include Python sample
code to show the reader how to perform simple manipulations of the 3D sky maps
and extract ranked lists of likely host galaxies. Finally, we include
mathematical details of the rapid volume reconstruction algorithm.Comment: For associated data release, see
http://asd.gsfc.nasa.gov/Leo.Singer/going-the-distanc
Spaceborne radar observations: A guide for Magellan radar-image analysis
Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described
Mojave remote sensing field experiment
The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars
Reduced cell cohesiveness of outgrowths from eccrine sweat glands delays wound closure in elderly skin
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134171/1/acel12493_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134171/2/acel12493.pd
Conceptualizing Cybercrime: Definitions, Typologies and Taxonomies
Cybercrime is becoming ever more pervasive and yet the lack of consensus surrounding what constitutes a cybercrime has a significant impact on society, legal and policy response, and academic research. Difficulties in understanding cybercrime begin with the variability in terminology and lack of consistency in cybercrime legislation across jurisdictions. In this review, using a structured literature review methodology, key cybercrime definitions, typologies and taxonomies were identified across a range of academic and non-academic (grey literature) sources. The findings of this review were consolidated and presented in the form of a new classification framework to understand cybercrime and cyberdeviance. Existing definitions, typologies and taxonomies were evaluated, and key challenges were identified. Whilst conceptualizing cybercrime will likely remain a challenge, this review provides recommendations for future work to advance towards a universal understanding of cybercrime phenomena as well as a robust and comprehensive classification system
Counting and confusion: Bayesian rate estimation with multiple populations
We show how to obtain a Bayesian estimate of the rates or numbers of signal and background events from a set of events when the shapes of the signal and background distributions are known, can be estimated, or approximated; our method works well even if the foreground and background event distributions overlap significantly and the nature of any individual event cannot be determined with any certainty. We give examples of determining the rates of gravitational-wave events in the presence of background triggers from a template bank when noise parameters are known and/or can be fit from the trigger data. We also give an example of determining globular-cluster shape, location, and density from an observation of a stellar field that contains a nonuniform background density of stars superimposed on the cluster stars
- …