228 research outputs found

    Groundwater dependence and drought within the southern African development community

    Get PDF
    A groundwater situation analysis of the SADC region has been undertaken as part of the World Bank GEF Programme as a basis for ensuring equitable use of groundwater resources, particularly during periods of drought, both for human needs and for sustaining ecosystems. Much of the groundwater in the region occurs in weathered crystalline rocks suitable for dispersed supply to rural communities, although there are several aquifers capable of sustaining urban demand that contribute to the supply of several major cities and towns. A number of SADC Member States, such as Botswana, Namibia and South Africa, are very dependent on groundwater, whereas the Democratic Republic of Congo is least dependent. Groundwater dependence and groundwater demand, together providing an indication of drought vulnerability, have been assessed from the availability and coverage of groundwater data, but it is very apparent that reliable and comprehensive groundwater data are major deficiencies throughout the SADC region. Few attempts have thus been made to calculate renewable groundwater resource volumes or develop optimum use of groundwater, despite the fact that susceptibility of many Member States to drought requires them to consider mitigation strategies to lessen the hardships imposed largely on their rural population. Such strategy requires long-term intervention and not short-term emergency responses, a process that is directly related to availability of comprehensive groundwater datasets. Considerable effort in groundwater assessment and monitoring and the accumulation, evaluation and dissemination of essential datasets will thus be required to maintain population livelihoods in future years when water supply is projected to be in deficit in over half of the SADC Member States

    Southern African development community regional situation analysis

    Get PDF
    The Southern African Development Community (SADC) groups fourteen sovereign states in the southern and eastern Africa region for the main purpose of fostering co-operation for mutual benefit from development of the resources of the whole region. The region accounts for almost 70% gross domestic product of sub-Saharan Africa and is home to almost a third of its people. In the context of water resources, conditions in the SADC region are highly variable with respect to the relative reliance of each of the Member States on surface or groundwater sources. However, studies already indicate that water resources will be scarce in 9 of the 14 Member States within the next 10 to 30 years, most especially in the southern and eastern portion of the SADC region. Clearly, water resource conservation and comprehensive national and regional planning is going to be crucial. SADC recognised the critical importance of water to regional integration and economic development and established its own Water Sector in 1996. A SADC Protocol on Shared Watercourse Systems was adopted to set the rules for joint management of resources. A Regional Strategic Action Plan for Integrated Water Resource Development and Management has been compiled; this is being implemented to address key water management issues, concerning both surface water bodies and aquifers (groundwater). The region is also characterised by rapid population growth. Extremes of climate bring frequent drought and substantial flood events that impact on rural populations as well as national productivity. The region is already highly dependent on groundwater for rural water supply, and it is clear that groundwater is a key element in the alleviation of the effects of drought on rural communities. However, policy responses to drought have, in the past, been based on short-term crisis reactions, which have generally proved to be inefficient or ineffective. To address this undesirable situation, proactive, sustainable and integrated management of groundwater resources needs to be instigated, but with due sympathy to the requirements of ecosystems

    Individual Goal Orientations, Team Empowerment, and Employee Creative Performance: A Case of Cross-Level Interactions

    Get PDF
    Intrigued by relationship between team motivational context and individual characteristics in the organizational reality, we developed and tested a cross-level model to investigate the interactive effects of team empowerment and individual goal orientations on individual creative performance through the mediating mechanism of an individual\u27s creative self-efficacy. Using multi-wave multi-source data from 63 R&D teams in three IT companies, we found that (1) team empowerment, individual learning goal orientation, and individual performance orientation are all positively related to individual creative performance through mediation of creative self-efficacy; (2) learning orientation and performance approach orientation could both supplement the effects of team empowerment on individual creative self-efficacy. Our findings point to the importance of individual goal orientation in shaping the effects of team motivation climates and provide insights for both scholars and practitioners. The specific practical implications include but are not limited to (1) individuals with learning and performance approach orientations should be identified during hiring procedures given that they could still thrive in less empowered teams and maintain a relatively high level of creative self-efficacy and creative outcomes; (2) managers should consider assigning employees who are more learning oriented to more empowering and open-ended tasks in order to obtain better creative results

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    corecore