327 research outputs found
Current Progress of Aptamer-Based Molecular Imaging
Aptamers, single-stranded oligonucleotides, are an important class of molecular targeting ligand. Since their discovery, aptamers have been rapidly translated into clinical practice. They have been approved as therapeutics and molecular diagnostics. Aptamers also possess several properties that make them uniquely suited to molecular imaging. This review aims to provide an overview of aptamers’ advantages as targeting ligands and their application in molecular imaging
Bioresponsive Mesoporous Silica Nanoparticles for Triggered Drug Release
Mesoporous silica nanoparticles (MSNPs) have garnered a great deal of attention as potential carriers for therapeutic payloads. However, achieving triggered drug release from MSNPs in vivo has been challenging. Here, we describe the synthesis of stimulus-responsive polymer-coated MSNPs and the loading of therapeutics into both the core and shell domains. We characterize MSNP drug-eluting properties in vitro and demonstrate that the polymer-coated MSNPs release doxorubicin in response to proteases present at a tumor site in vivo, resulting in cellular apoptosis. These results demonstrate the utility of polymer-coated nanoparticles in specifically delivering an antitumor payload.National Science Foundation (U.S.) (grant R01-CA124427)National Science Foundation (U.S.) (grant U54-CA119349)National Science Foundation (U.S.) (grant U54-CA119335
Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles
Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size
CD43 gene expression is mediated by a nuclear factor which binds pyrimidine-rich single-stranded DNA
- …