823 research outputs found
Space simulation and radiative property testing system and method Patent
Development of method and equipment for testing heat radiative properties of material under controlled environmental condition
The two-component giant radio halo in the galaxy cluster Abell 2142
We report on a spectral study at radio frequencies of the giant radio halo in
A2142 (z=0.0909), which we performed to explore its nature and origin. A2142 is
not a major merger and the presence of a giant radio halo is somewhat
surprising. We performed deep radio observations with the GMRT at 608 MHz, 322
MHz, and 234 MHz and with the VLA in the 1-2 GHz band. We obtained high-quality
images at all frequencies in a wide range of resolutions. The radio halo is
well detected at all frequencies and extends out to the most distant cold front
in A2142. We studied the spectral index in two regions: the central part of the
halo and a second region in the direction of the most distant south-eastern
cold front, selected to follow the bright part of the halo and X-ray emission.
We complemented our observations with a preliminary LOFAR image at 118 MHz and
with the re-analysis of archival VLA data at 1.4 GHz. The two components of the
radio halo show different observational properties. The central brightest part
has higher surface brightess and a spectrum whose steepness is similar to those
of the known radio halos, i.e. . The ridge, which fades into the larger scale emission, is broader in
size and has considerably lower surface brightess and a moderately steeper
spectrum, i.e. . We propose that
the brightest part of the radio halo is powered by the central sloshing in
A2142, similar to what has been suggested for mini-halos, or by secondary
electrons generated by hadronic collisions in the ICM. On the other hand, the
steeper ridge may probe particle re-acceleration by turbulence generated either
by stirring the gas and magnetic fields on a larger scale or by less energetic
mechanisms, such as continuous infall of galaxy groups or an off-axis merger.Comment: 18 pages, 10 figures, 4 tables - A&A, accepte
IoT and machine learning for in-situ process control using Laser Based Additive Manufacturing (LBAM) case study
Additive manufacturing (AM) is emerging within many industrial applications due to inherent advantages such as rapid prototyping and production. However, the correlation of process parameters across modules and their impacts on product quality are not yet fully understood. This article presents a system built out of Internet of Things (IoT) and edge computing technologies to collect and analyze AM process in-situ. An IoT thermal camera platform was developed, and integrated within an Laser Based Additive Manufacturing (LBAM) system to collect information that could be used to characterize the thermal distribution surrounding the melt pool. Machine learning techniques were utilised to identify the occurrence of defects using the collected low-resolution thermal images
Orbital control on late Miocene climate and the North African monsoon: insight from an ensemble of sub-precessional simulations
Orbital forcing is a key climate driver over multi-millennial timescales. In particular, monsoon systems are thought to be driven by orbital cyclicity, especially by precession. Here, we analyse the impact of orbital forcing on global climate with a particular focus on the North African monsoon, by carrying out an ensemble of 22 equally spaced (one every 1000 years) atmosphere–ocean–vegetation simulations using the HadCM3L model, covering one full late Miocene precession-driven insolation cycle with varying obliquity (between 6.568 and 6.589 Ma). The simulations only differ in their prescribed orbital parameters, which vary realistically for the selected time period. We have also carried out two modern-orbit control experiments, one with late Miocene and one with present-day palaeogeography, and two additional sensitivity experiments for the orbital extremes with varying CO2 forcing. Our results highlight the high sensitivity of the North African summer monsoon to orbital forcing, with strongly intensified precipitation during the precession minimum, leading to a northward penetration of vegetation up to ~ 21° N. The modelled summer monsoon is also moderately sensitive to palaeogeography changes, but it has a low sensitivity to atmospheric CO2 concentration between 280 and 400 ppm. Our simulations allow us to explore the climatic response to orbital forcing not only for the precession extremes but also on sub-precessional timescales. We demonstrate the importance of including orbital variability in model–data comparison studies, because doing so partially reduces the mismatch between the late Miocene terrestrial proxy record and model results. Failure to include orbital variability could also lead to significant miscorrelations in temperature-based proxy reconstructions for this time period, because of the asynchronicity between maximum (minimum) surface air temperatures and minimum (maximum) precession in several areas around the globe. This is of particular relevance for the North African regions, which have previously been identified as optimal areas to target for late Miocene palaeodata acquisition
The Covariant Approach to LRS Perfect Fluid Spacetime Geometries
The dynamics of perfect fluid spacetime geometries which exhibit {\em Local
Rotational Symmetry} (LRS) are reformulated in the language of a
"threading" decomposition of the spacetime manifold, where covariant fluid and
curvature variables are used. This approach presents a neat alternative to the
orthonormal frame formalism. The dynamical equations reduce to a set of
differential relations between purely scalar quantities. The consistency
conditions are worked out in a transparent way. We discuss their various
subcases in detail and focus in particular on models with higher symmetries
within the class of expanding spatially inhomogeneous LRS models, via a
consideration of functional dependencies between the dynamical variables.Comment: 25 pages, uuencoded/compressed postscript fil
Inner tegument protein pUL37 of herpes simplex virus type 1 is involved in directing capsids to the trans-Golgi network for envelopment
Secondary envelopment of herpes simplex virus type 1 has been demonstrated as taking place at the trans-Golgi network (TGN). The inner tegument proteins pUL36 and pUL37 and the envelope glycoproteins gD and gE are known to be important for secondary envelopment. We compared the cellular localizations of capsids from a virus mutant lacking the UL37 gene with those of a virus mutant lacking the genes encoding gD and gE. Although wild-type capsids accumulated at the TGN, capsids of the pUL37− mutant were distributed throughout the cytoplasm and showed no association with TGN-derived vesicles. This was in contrast to capsids from a gD−gE− mutant, which accumulated in the vicinity of TGN vesicles, but did not colocalize with them, suggesting that they were transported to the TGN but were unable to undergo envelopment. We conclude that the inner tegument protein pUL37 is required for directing capsids to the TGN, where secondary envelopment occurs
Immunomagnetic t-lymphocyte depletion (ITLD) of rat bone marrow using OX-19 monoclonal antibody
Graft versus host disease (GVHD) may be abrogated and host survival prolonged by in vitro depletion of T lymphocytes from bone marrow (BM) prior to allotransplantation. Using a mouse anti-rat pan T-lymphocyte monoclonal antibody (0×19) bound to monosized, magnetic, polymer beads, T lymphocytes were removed in vitro from normal bone marrow. The removal of the T lymphocytes was confirmed by flow cytometry. Injection of the T-lymphocyte-depleted bone marrow into fully allogeneic rats prevents the induction of GVHD and prolongs host survival. A highly efficient technique of T-lymphocyte depletion using rat bone marrow is described. It involves the binding of OX-19, a MoAb directed against all rat thy-mocytes and mature peripheral T lymphocytes, to monosized, magnetic polymer spheres. Magnetic separation of T lymphocytes after mixing the allogeneic bone marrow with the bead/OX-19 complex provides for a simple, rapid depletion of T lymphocytes from the bone marrow. In vitro studies using flow cytometry and the prevention of GVHD in a fully allogeneic rat bone marrow model have been used to demonstrate the effectiveness of the depletion procedure. © 1989 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted
Recommended from our members
No high Tibetan Plateau until the Neogene
The Late Paleogene surface height and paleoenvironment for the core area of the Qinghai-Tibetan Plateau (QTP) remain critically unresolved. Here, we report the discovery of the youngest well-preserved fossil palm leaves from Tibet. They were recovered from the Late Paleogene (Chattian), ca. 25.5 ± 0.5 million years, paleolake sediments within the Lunpola Basin (32.033°N, 89.767°E), central QTP at a present elevation of 4655 m. The anatomy of palms renders them intrinsically susceptible to freezing, imposing upper bounds on their latitudinal and altitudinal distribution. Combined with model-determined paleoterrestrial lapse rates, this shows that a high plateau cannot have existed in the core of Tibet in the Paleogene. Instead, a deep paleovalley, whose floor was 4 km) high mountain systems, formed a topographically highly varied landscape. This finding challenges prevailing views on tectonic processes, monsoon dynamics, and the evolution of Asian biodiversity
High quality, continuous measurements of CO2 in Biosphere 2 to assess whole mesocosm carbon cycling
Accurate measurements of atmospheric CO2 concentrations are performed routinely in a variety of experimental settings including open fields and forests, leaf gas-exchange chambers, phytotrons and specialized growth chambers. However, the accurate monitoring of large scale structurally and biologically complex experimental systems, operating as materially closed systems, is not widely reported. Here we report the design elements, material specifications and other details for high precision monitoring of CO2 in Biosphere 2, a large scale ecologically diverse experimental facility located in Oracle, AZ. The results are used to illustrate how carbon balance in a temporarily isolated sub-system of the facility is used to assess carbon dynamics under different environmental conditions such as variable atmospheric CO2 levels, temperature, light, and soil moisture. The analytical system described here should be applicable for any settings in which continuous, high accuracy measurements of CO2 in a complex system are needed for quantitative research. (C) 1999 Elsevier Science B.V. All rights reserved
Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach
Invasion ecology urgently requires predictive methodologies that can forecast the ecological impacts of existing, emerging and potential invasive species. We argue that many ecologically damaging invaders are characterised by their more efficient use of resources. Consequently, comparison of the classical ‘functional response’ (relationship between resource use and availability) between invasive and trophically analogous native species may allow prediction of invader ecological impact. We review the utility of species trait comparisons and the history and context of the use of functional responses in invasion ecology, then present our framework for the use of comparative functional responses. We show that functional response analyses, by describing the resource use of species over a range of resource availabilities, avoids many pitfalls of ‘snapshot’ assessments of resource use. Our framework demonstrates how comparisons of invader and native functional responses, within and between Type II and III functional responses, allow testing of the likely population-level outcomes of invasions for affected species. Furthermore, we describe how recent studies support the predictive capacity of this method; for example, the invasive ‘bloody red shrimp’ Hemimysis anomala shows higher Type II functional responses than native mysids and this corroborates, and could have predicted, actual invader impacts in the field. The comparative functional response method can also be used to examine differences in the impact of two or more invaders, two or more populations of the same invader, and the abiotic (e.g. temperature) and biotic (e.g. parasitism) context-dependencies of invader impacts. Our framework may also address the previous lack of rigour in testing major hypotheses in invasion ecology, such as the ‘enemy release’ and ‘biotic resistance’ hypotheses, as our approach explicitly considers demographic consequences for impacted resources, such as native and invasive prey species. We also identify potential challenges in the application of comparative functional responses in invasion ecology. These include incorporation of numerical responses, multiple predator effects and trait-mediated indirect interactions, replacement versus non-replacement study designs and the inclusion of functional responses in risk assessment frameworks. In future, the generation of sufficient case studies for a meta-analysis could test the overall hypothesis that comparative functional responses can indeed predict invasive species impact
- …